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Chapter 1

Semigroups

1.1 Semigroups on Banach spaces: The Hille-Yosida theo-
rem

Let (B, ‖ · ‖) be a Banach space, which for us will later be Lp(X,µ), where (X,µ) is a
measure space.

Definition 1.1.1. A family of bounded operators (Pt)t≥0 on B is called a strongly con-
tinuous contraction semigroup if:

• P0 = Id and for s, t ≥ 0, Ps+t = PsPt;

• For each x ∈ B, the map t→ Ptx is continuous;

• For each x ∈ B and t ≥ 0, ‖Ptx‖ ≤ ‖x‖.

Now, let us recall that a densely defined linear operator

A : D(A) ⊂ B → B

is said to be closed if for every sequence xn ∈ D(A) that converges to x ∈ B and such that
Axn → y ∈ B, we have x ∈ D(A) and y = Ax.

Proposition 1.1.2. Let (Pt)t≥0 be a strongly continuous contraction semigroup on B.
There exists a closed and densely defined operator

A : D(A) ⊂ B → B

where

D(A) =

{
f ∈ B, lim

t→0

Ptf − f
t

exists

}
,

such that for f ∈ D(A),

lim
t→0

∥∥∥∥Ptf − ft
−Af

∥∥∥∥ = 0.
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The operator A is called the generator of the semigroup (Pt)t≥0. We also say that A
generates (Pt)t≥0.

Proof. Let us consider the following bounded operators on B :

At =
1

t

∫ t

0
Psds.

For f ∈ B and h > 0, we have

1

t
(PtAhf −Ahf) =

1

ht

∫ h

0
(Ps+tf − Psf)ds

=
1

ht

∫ t

0
(Ps+hf − Psf)ds.

Therefore, we obtain

lim
t→0

1

t
(PtAhf −Ahf) =

1

h
(Phf − f) .

This implies,

{Ahf, f ∈ B, h > 0} ⊂
{
f ∈ B, lim

t→0

Ptf − f
t

exists

}
Since limh→0Ahf = f , we deduce that{

f ∈ B, lim
t→0

Ptf − f
t

exists

}
is dense in B. We can then consider

Af = lim
t→0

Ptf − f
t

,

which is of course defined on the domain

D(A) =

{
f ∈ B, lim

t→0

Ptf − f
t

exists

}
.

We let as an exercise to the reader to prove that A is closed (Hint: It is the limit of the
bounded operators Ptf−f

t , t > 0).

The following important theorem is due to Hille and Yosida and provides, through spec-
tral properties, a characterization of closed operators that are generators of contraction
semigroups.
Let A : D(A) ⊂ B → B be a densely defined closed operator. A constant λ ∈ R is said
to be in the spectrum of A if the operator λId − A is not bijective. In that case, it is a
consequence of the closed graph theorem1 that if λ is not in the spectrum of A , then the
operator λId−A has a bounded inverse. The spectrum of an operator A shall be denoted
ρ(A).

1An everywhere defined operator between two Banach spaces A : B1 → B2 is bounded if and only if it
is closed.
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Theorem 1.1.3 (Hille-Yosida theorem). A necessary and sufficient condition that a
densely defined closed operator A generates a strongly continuous contraction semigroup
is that:

• ρ(A) ⊂ (−∞, 0];

• ‖(λId−A)−1‖ ≤ 1
λ for all λ > 0.

Proof. Let us first assume that A generates a strongly continuous contraction semigroup
(Pt)t≥0. Let λ > 0. We want to prove that λId−A is a bijective operator D(A)→ B.
The formal Laplace transform formula∫ +∞

0
e−λtetAdt = (λId−A)−1,

suggests that the operator

Rλ =

∫ +∞

0
e−λtPtdt

is the inverse of λId− A. We show this is indeed the case. First, let us observe that Rλ

is well-defined as a Riemann integral since t → Pt is continuous and ‖Pt‖ ≤ 1. We now
show that for x ∈ B, Rλx ∈ D(A). For h > 0,

Ph − Id

h
Rλx =

∫ +∞

0
e−λt

Ph − Id

h
Ptxdt

=

∫ +∞

0
e−λt

Ph+t − Pt
h

xdt

= eλh
∫ +∞

h
e−λs

Ps − Ps−h
h

xds

=
eλh

h

(
Rλx−

∫ h

0
e−λsPsxds−

∫ +∞

h
e−λsPs−hxds

)
=
eλh − 1

h
Rλx−

eλh

h

∫ h

0
e−λsPsxds

By letting h→ 0, we deduce that Rλx ∈ D(A) and moreover

ARλx = λRλx− x.

Therefore we proved
(λId−A)Rλ = Id.

Furthermore, it is readily checked that, since A is closed, for x ∈ D(A),

ARλx = A

∫ +∞

0
e−λtPtxdt =

∫ +∞

0
e−λtAPtxdt =

∫ +∞

0
e−λtPtAxdt = RλAx.
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We therefore conclude
(λId−A)Rλ = Rλ(λId−A) = Id.

Thus,
Rλ = (λId−A)−1,

and, from the formula

Rλ =

∫ +∞

0
e−λtPtdt,

it is clear that

‖Rλ‖ ≤
1

λ
.

Let us now assume that A is a densely defined closed operator such that

• ρ(A) ⊂ (−∞, 0];

• ‖(λId−A)−1‖ ≤ 1
λ for all λ > 0.

The idea is to consider the following sequence of bounded operators

An = −nId + n2(nId−A)−1,

from which it is easy to define a contraction semigroup and then to show that An → A.
We will then define a contraction semigroup associated to A as the limit of the contraction
semigroups associated to An.
First, for x ∈ D(A), we have

Anx = n(nId−A)−1Ax→n→+∞ 0.

Now, since An is a bounded operator, we may define a semigroup (Pnt )t≥0 through the
formula

Pnt =

+∞∑
k=0

tkAkn
k!

.

At that point, let us observe that we also have

Pnt = e−nt
+∞∑
k=0

n2ktk(nId−A)−k

k!
.

As a consequence, we have

‖Pnt ‖ ≤ e−nt
+∞∑
k=0

n2k‖(nId−A)−1‖k
k!

≤ e−nt
+∞∑
k=0

nktk

k!

≤ 1
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and (Pnt )t≥0 is therefore a contraction semigroup. The strong continuity is also easily
checked:

‖Pnt+h − Pnt ‖ = ‖Pnt (Pnh − Id)‖
≤ ‖Pnh − Id‖

≤
+∞∑
k=1

hk‖An‖k
k!

→h→0 0.

We now prove that for fixed t ≥ 0, x ∈ D(A), (Pnt x)n≥1 is a Cauchy sequence. We have

‖Pnt x− Pmt x‖ =

∥∥∥∥∫ t

0

d

ds
(Pns P

m
t−sx)ds

∥∥∥∥
=

∥∥∥∥∫ t

0
Pns P

m
t−s(Anx−Amx)ds

∥∥∥∥
≤
∫ t

0
‖Anx−Amx‖ds

≤ t‖Anx−Amx‖.

Therefore for x ∈ D(A), (Pnt x)n≥1 is a Cauchy sequence and we can define

Ptx = lim
n→+∞

Pnt x.

Since D(A) is dense and the family (Pnt )n≥1 uniformly bounded, the above limit actually
exists for every x ∈ B, so that (Pt)t≥0 is well-defined on B. It is clear that (Pt)t≥0 is a
strongly continuous semigroup, inheriting these properties from (Pnt )t≥0 (the details are
let to the reader here).
It remains to show that the generator of (Pt)t≥0, call it Ã is equal to A. For every t ≥ 0,
x ∈ D(A) and n ≥ 1,

Pnt x = x+

∫ t

0
Pns Axds,

therefore

Pnt x = x+

∫ t

0
Pns Axds.

Hence D(A) ⊂ D(Ã) and for x ∈ D(A), Ãx = Ax. Finally, since for λ > 0, (λId −
A)D(A) = B = (λId− Ã)D(Ã), we conclude D(A) = D(Ã).

Exercise 1.1.4. By using the proof of Theorem 1.1.3, show the following fact: If A1 and
A2 are the generators of contraction semigroups (P 1

t )t≥0 and (P 2
t )t≥0, then for x ∈ B, the

two following statements are equivalent:

• ∀ λ > 0, (λId−A1)−1x = (λId−A2)−1x;
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• ∀ t ≥ 0, P 1
t x = P 2

t x.

As powerful as it is, the Hille-Yosida theorem is difficult to directly apply to the theory of
diffusion semigroups. The following corollary is then useful.

Definition 1.1.5. A densely defined operator on a Banach space B is called dissipative if
for each x ∈ D(A), we can find an element φ of the dual space B∗, such that:

• ‖φ‖ = ‖x‖;

• φ(x) = ‖x‖2;

• φ(Ax) ≤ 0.

With this new definition in hands, we have the following corollary of the Hille-Yosida
theorem:

Corollary 1.1.6. A closed operator A on a Banach space B is the generator of a strongly
continuous contraction semigroup, if and only if:

• A is dissipative;

• For λ > 0, the range of the operator λId−A is B.

Proof. Let us first assume that A is the generator of a contraction semigroup (Pt)t≥0. From
the Hahn-Banach theorem, there exists φ ∈ B∗ such that ‖φ‖ = ‖x‖ and φ(x) = ‖x‖2.
We have, at t = 0,

d

dt
φ(Ptx) = φ(Ax),

but
|φ(Ptx)| ≤ ‖φ‖‖Ptx‖ ≤ ‖φ‖‖x‖ ≤ ‖x‖2 ≤ φ(x),

thus, at t = 0,
d

dt
φ(Ptx) ≤ 0,

and we conclude
φ(Ax) ≤ 0.

The fact that for λ > 0, the range of the operator λId − A is B is a straightforward
consequence of Theorem 1.1.3.
Let us now assume that A is a densely defined closed operator such that:

• A is dissipative;

• For λ > 0, the range of the operator λId−A is B.

Let x ∈ D(A) and let φ ∈ B∗, such that:

• ‖φ‖ = ‖x‖;
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• φ(x) = ‖x‖2;

• φ(Ax) ≤ 0.

For λ > 0,

λ‖x‖2 ≤ λφ(x)− φ(Ax)

≤ φ((λId−A)x)

≤ ‖x‖‖(λId−A)x‖.

Thus,
‖(λId−A)x‖ ≥ λ‖x‖.

This implies that the range Rλ of the operator λId − A is closed and that this operator
has a bounded inverse from Rλ to D(A) with norm lower than 1

λ . Since Rλ = B, the
proof is complete.

1.2 Semigroups on Hilbert spaces: The golden triangle

Let (H, 〈·, ·〉H be a Hilbert space and let A be a densely defined operator on a domain
D(A). We have the following basic definitions.

• The operator A is said to be symmetric if for f, g ∈ D(A),

〈f,Ag〉H = 〈Af, g〉H.

• The operator A is said to be non negative symmetric operator, if it is symmetric
and if for f ∈ D(A),

〈f,Af〉H ≥ 0.

It is said to be non positive, if for f ∈ D(A),

〈f,Af〉H ≤ 0.

• The adjoint A∗ of A is an operator defined on the domain

D(A∗) = {f ∈ H,∃ c(f) ≥ 0, ∀ g ∈ D(A), |〈f,Ag〉H| ≤ c(f)‖g‖H}.

Since for f ∈ D(A∗), the map g → 〈f,Ag〉H is bounded on D(A), it extends thanks
to Hahn-Banach theorem to B. The Riesz representation theorem allows then to
define A∗ by the formula

〈A∗f, g〉H = 〈f,Ag〉H
where g ∈ D(A), f ∈ D(A∗). Since D(A) is dense, A∗ is uniquely defined.

• The operator A is said to be self-adjoint if it is symmetric and if D(A∗) = D(A).
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Let us observe that, in general, the adjoint A∗ is not necessarily densely defined, however it
is readily checked that if A is a symmetric operator then, from Cauchy-Schwarz inequality,
D(A) ⊂ D(A∗). Thus, if A is symmetric, then A∗ is densely defined.
We have the following first criterion for self-adjointness which may be useful.

Lemma 1.2.1. Let A : D(A) ⊂ H → H be a densely defined operator. Consider the graph
of A:

GA = {(v,Av), v ∈ D(A)} ⊂ H ⊕H,
and the complex structure

J :H⊕H → H⊕H
(v, w)→ (−w, v).

Then, the operator A is self-adjoint if and only if

G⊥A = J (GA) .

Proof. It is checked that for any densely defined operator A

GA∗ = J
(
G⊥A

)
,

and the conclusion follows from routine computations.

The following result is often useful.

Lemma 1.2.2. Let A : D(A) ⊂ H → H be an injective densely defined self-adjoint
operator. Let us denote by R(A) the range of A. The inverse operator

A−1 : R(A)→ H

is a densely defined self-adjoint operator.

Proof. First, let us observe that

R(A)⊥ = Ker(A∗) = Ker(A) = {0}.

Therefore R(A) is dense in H and A−1 is densely defined. Now,

G⊥A−1 = J (G−A)⊥

= J
(
G⊥−A

)
= JJ (G−A)

= J (GA−1) .
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A major result in functional analysis is the spectral theorem.

Theorem 1.2.3 (Spectral theorem). Let A be a non negative self-adjoint operator on H.
There is a measure space (Ω, ν), a unitary map U : L2(Ω, ν)→ H and a non negative real
valued measurable function λ on Ω such that

U−1AUf(x) = λ(x)f(x),

for x ∈ Ω, Uf ∈ D(A). Moreover, given f ∈ L2(Ω, ν), Uf belongs to D(A) if only if∫
Ω λ

2f2dν < +∞.

Definition 1.2.4. (Functional calculus) Let A be a non negative self-adjoint operator on
H. Let g : R≥0 → R be a Borel function. With the notations of the spectral theorem, one
defines the operator g(A) by the requirement

U−1g(A)Uf(x) = g(λ(x))f(x),

with D(g(A)) = {Uf, (g ◦ λ)f ∈ L2(Ω, ν)}.

Exercise 1.2.5. Show that if A is a non negative self-adjoint operator on H and g is a
bounded Borel function, then g(A) is a bounded operator on H.

After those preliminaries, we turn to the study of semigroups in Hilbert spaces:

Definition 1.2.6. A strongly continuous self-adjoint contraction semigroup is a family of
self-adjoint operators (Pt)t≥0 : H → H everywhere defined on H such that:

1. For s, t ≥ 0, Pt ◦ Ps = Ps+t (semigroup property);

2. For every f ∈ H, limt→0 Ptf = f (strong continuity);

3. For every f ∈ H and t ≥ 0, ‖Ptf‖ ≤ ‖f‖ (contraction property).

Definition 1.2.7. A closed symmetric non negative bilinear form on H is a densely defined
non negative quadratic form E : F := D(E)→ R such that F equipped with the norm

‖f‖2F = ‖f‖2 + E(f)

is a Hilbert space. If E is a closed symmetric non negative bilinear form on H, one can
define for f, g ∈ F , E(f, g) = 1

4(E(f + g)− E(f − g)).

One has the following theorems:

Theorem 1.2.8. Let (Pt)t≥0 be a strongly continuous self-adjoint contraction semigroup
on H. Then its generator A is a densely defined non positive self-adjoint operator on H.
Conversely, if A is a densely defined non positive self-adjoint operator on H, then it is the
generator a strongly continuous self-adjoint contraction semigroup on H.
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Proof. Let (Pt)t≥0 be a strongly continuous self-adjoint contraction semigroup on H with
generator A. As we proved in the previous lecture, one has for λ > 0∫ +∞

0
e−λtPtdt = (λId−A)−1.

However, the operator
∫ +∞

0 e−λtPtdt is seen to be self-adjoint, thus (λId−A)−1 is. From
previous lemma, we deduce that λId− A is self-adjoint, from which we deduce that A is
self-adjoint (exercise !).
On the other hand, let A be a densely defined non positive self-adjoint operator on H.
From spectral theorem, there is a measure space (Ω, ν), a unitary map U : L2(Ω, ν)→ H
and a non negative real valued measurable function λ on Ω such that

U−1AUf(x) = −λ(x)f(x),

for x ∈ Ω, Uf ∈ D(A). We define then Pt : H → H such that

U−1PtUf(x) = e−tλ(x)f(x),

and let as an exercise the proof that (Pt)t≥0 is a strongly continuous self-adjoint contraction
semigroup on H with generator A.

Theorem 1.2.9. Let (Pt)t≥0 be a strongly continuous self-adjoint contraction semigroup
on H. One can define a closed symmetric non negative bilinear form on H by

E(f) = lim
t→0

〈
IdH − Pt

t
f, f

〉
.

The domain F of this form is the set of f ’s for which the limit exists.

Proof. Let A be the generator of the semigroup (Pt)t≥0. We use spectral theorem to
represent A as

U−1AUg(x) = −λ(x)g(x),

so that
U−1PtUg(x) = e−tλ(x)g(x).

We then note that for every g ∈ L2(Ω, ν),〈
IdH − Pt

t
Ug, Ug

〉
=

∫
Ω

1− e−tλ(x)

t
g(x)2dν(x).

This proves that for every f ∈ H, the map t→
〈
IdH−Pt

t f, f
〉

is non increasing. Therefore,

the limit limt→0

〈
IdH−Pt

t f, f
〉

exists if and only if
∫

Ω(U−1f)2(x)λ(x)dν(x) < +∞, which

is equivalent to the fact that f ∈ D((−A)1/2). In which case we have

lim
t→0

〈
IdH − Pt

t
f, f

〉
= ‖(−A)1/2f‖2.
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Since (−A)1/2 is a densely defined self-adjoint operator, the quadratic form

E(f) := ‖(−A)1/2f‖2

is closed and densely defined on F := D((−A)1/2).

Theorem 1.2.10. If E is a closed symmetric non negative bilinear form on H. There
exists a unique densely defined non positive self-adjoint operator A on H defined by

D(A) = {f ∈ F , ∃g ∈ H, ∀h ∈ F , E(f, h) = −〈h, g〉}

Af = g.

The operator A is called the generator of E. Conversely, if A is a densely defined non
positive self-adjoint operator on H, one can define a closed symmetric non negative bilinear
form E on H by

F = D((−A)1/2), E(f) = ‖(−A)1/2f‖2.
Proof. Let E be a closed symmetric non negative bilinear form on H. As usual, we denote
by F the domain of E . We note that for λ > 0, F equipped with the norm (‖f‖2+λE(f))1/2

is a Hilbert space because E is closed. From the Riesz representation theorem, there exists
then a linear operator Rλ : H → F such that for every f ∈ H, g ∈ F

〈f, g〉 = λ〈Rλf, g〉+ E(Rλf, g).

From the definition, the following properties are then easily checked:

1. ‖Rλf‖ ≤ 1
λ‖f‖ (apply the definition of Rλ with g = Rλf and then use the Cauchy-

Schwarz inequality);

2. For every f, g ∈ H, 〈Rλf, g〉 = 〈f,Rλg〉;

3. Rλ1 −Rλ2 + (λ1 − λ2)Rλ1Rλ2 = 0;

4. For every f ∈ H, limλ→+∞ ‖λRλf − f‖ = 0.

We then claim that Rλ is invertible. Indeed, if Rλf = 0, then for α > λ, one has from 3,
Rαf = 0. Therefore f = limα→+∞Rαf = 0. Denote then

Af = λf −R−1
λ f,

and D(A) is the range of Rλ. It is straightforward to check that A does not depend on
λ. The operator A is a densely defined self-adjoint operator that satisfies the properties
stated in the theorem (Exercise !).

Exercise 1.2.11. Prove the properties 1,2,3,4 of the previous proof.

As a conclusion, one has bijections between the set of non positive self-adjoint operators,
the set of closed symmetric non negative bilinear form and the set of strongly continuous
self-adjoint contraction semigroups. This is the golden triangle of the theory of heat
semigroups on Hilbert spaces !
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1.3 Friedrichs extension, Essential self-adjointness

As in the previous lecture, let (H, 〈·, ·〉) be a Hilbert space.

Definition 1.3.1. Let A : D(A) → H be a densely defined operator. A densely defined
operator Ā is called an extension of A if D(A) ⊂ D(Ā) and for every f ∈ D(A), Āf = Af .

Theorem 1.3.2 (Friedrichs extension). Let A be a densely defined non positive symmetric
operator on H. There exists at least one self-adjoint extension of A.

Proof. On D(A), let us consider the following norm

‖f‖2A = ‖f‖2 − 〈Af, f〉.

By completingD(A) with respect to this norm, we get an abstract Hilbert space (HA, 〈·, ·〉A).
Since for f ∈ D(A), ‖f‖ ≤ ‖f‖A, the injection map ι : (D(A), ‖ · ‖A)→ (H, ‖ · ‖) is contin-
uous and it may therefore be extended into a continuous map ῑ : (HA, ‖ · ‖A)→ (H, ‖ · ‖).
Let us show that ῑ is injective so that HA may be identified with a subspace of H. So, let
f ∈ HA such that ῑ(f) = 0. We can find a sequence fn ∈ D(A), such that ‖fn − f‖A → 0
and ‖fn‖ → 0. We have then

‖f‖A = lim
m,n→+∞

〈fn, fm〉A
= lim

m→+∞
lim

n→+∞
〈fn, fm〉 − 〈Afn, fm〉

= 0,

thus f = 0 and ῑ is injective. Therefore, HA may be identified with a subspace of H. Since
D(A) ⊂ HA, one has that HA is dense in H. We consider now the quadratic form on H
defined by

E(f) = ‖f‖2A − ‖f‖2, f ∈ HA
It is closed because (HA, 〈·, ·〉A) is a Hilbert space. The generator of this quadratic form
is then a self-adjoint extension of A.

Remark 1.3.3. In general self-adjoint extensions of a given symmetric operator are not
unique. The operator constructed in the proof above is called the Friedrichs extension of
A. It is the minimal self-adjoint extension of A.

Definition 1.3.4. Let A be a densely defined non positive symmetric operator on H. We
say that A is essentially self-adjoint if it admits a unique self-adjoint extension.

We have the following convenient criterion for essential self-adjointness whose proof is let
as an exercise to the reader.

Lemma 1.3.5. Let A be a densely defined non positive symmetric operator on H. If for
some λ > 0,

Ker(−A∗ + λId) = {0},
then the operator A is essentially self-adjoint.
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1.4 Diffusion operators on Rn

Throughout the section, we consider a second order differential operator that can be
written

L =

n∑
i,j=1

σij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
,

where bi and σij are continuous functions on Rn and for every x ∈ Rn, the matrix
(σij(x))1≤i,j≤n is a symmetric and non negative matrix. Such operator is called a dif-
fusion operator.
We will assume that there is Borel measure µ which is equivalent to the Lebesgue measure
and that symmetrizes L in the sense that for every smooth and compactly supported
functions f, g : Rn → R, ∫

Rn
gLfdµ =

∫
Rn
fLgdµ.

In what follows, as usual, we denote by C∞0 (Rn) the set of smooth and compactly supported
functions f : Rn → R.

Exercise 1.4.1. On C∞0 (Rn), let us consider the operator

L = ∆ + 〈∇U,∇·〉,

where U : Rn → R is a C1 function. Show that L is symmetric with respect to the measure

µ(dx) = eU(x)dx.

Exercise 1.4.2 (Divergence form operator). On C∞0 (Rn), let us consider the operator

Lf = div(σ∇f),

where div is the divergence operator defined on a C1 function φ : Rn → Rn by

div φ =
n∑
i=1

∂φi
∂xi

and where σ is a C1 field of non negative and symmetric matrices. Show that L is a
diffusion operator which is symmetric with respect to the Lebesgue measure of Rn.

For every smooth functions f, g : Rn → R, let us define the so-called carré du champ2,
which is the symmetric first-order differential form defined by:

Γ(f, g) =
1

2
(L(fg)− fLg − gLf) .

2The litteral translation from French is square of the field.
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A straightforward computation shows that

Γ(f, g) =
n∑

i,j=1

σij(x)
∂f

∂xi

∂g

∂xj
,

so that for every smooth function f ,

Γ(f, f) ≥ 0.

Exercise 1.4.3.

1. Show that if f, g : Rn → R are C1 functions and φ1, φ2 : R→ R are also C1 then,

Γ(φ1(f), φ2(g)) = φ′1(f)φ′2(g)Γ(f, g).

2. Show that if f : Rn → R is a C2 function and φ : R→ R is also C2,

Lφ(f) = φ′(f)Lf + φ′′(f)Γ(f, f).

In the sequel we shall consider the bilinear form given for f, g ∈ C∞0 (Rn) by

E(f, g) =

∫
Rn

Γ(f, g)dµ.

This is the quadratic associated to L. It is readily checked that E is symmetric:

E(f, g) = E(g, f),

and non negative
E(f, f) ≥ 0.

We may observe that thanks to symmetry of L,

E(f, g) = −
∫
Rn
fLgdµ = −

∫
Rn
gLfdµ.

The operator L on its domain D(L) = C∞0 (Rn) is a densely defined non positive symmetric
operator on the Hilbert space L2(Rn, µ). However, it is not self-adjoint (why?).
The following proposition provides a useful sufficient condition for essential self-adjointness
that is easy to check for several diffusion operators. We recall that a diffusion operator is
said to be elliptic if the matrix σ is invertible.

Proposition 1.4.4. If the diffusion operator L is elliptic with smooth coefficients and if
there exists an increasing sequence hn ∈ C∞0 (Rn), 0 ≤ hn ≤ 1, such that hn ↗ 1 on Rn,
and ||Γ(hn, hn)||∞ → 0, as n→∞, then the operator L is essentially self-adjoint.
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Proof. Let λ > 0. According to the previous lemma, it is enough to check that if L∗f = λf
with λ > 0, then f = 0. As it was observed above, L∗f = λf is equivalent to the fact that,
in sense of distributions, Lf = λf . From the hypoellipticity of L, we deduce therefore
that f is a smooth function. Now, for h ∈ C∞0 (Rn),∫

Rn
Γ(f, h2f)dµ = −〈f, L(h2f)〉L2(Rn,µ)

= −〈L∗f, h2f〉L2(Rn,µ)

= −λ〈f, h2f〉L2(Rn,µ)

= −λ〈f2, h2〉L2(Rn,µ)

≤ 0.

Since
Γ(f, h2f) = h2Γ(f, f) + 2fhΓ(f, h),

we deduce that
〈h2,Γ(f, f)〉L2(Rn,µ) + 2〈fh,Γ(f, h)〉L2(Rn,µ) ≤ 0.

Therefore, by Cauchy-Schwarz inequality

〈h2,Γ(f, f)〉L2(Rn,µ) ≤ 4‖f |22‖Γ(h, h)‖∞.

If we now use the sequence hn and let n→∞, we obtain Γ(f, f) = 0 and therefore f = 0,
as desired.

Exercise 1.4.5. Let
L = ∆ + 〈∇U,∇·〉,

where U is a smooth function on Rn. Show that with respect to the measure µ(dx) =
eU(x)dx, the operator L is essentially self-adjoint on C∞0 (Rn).

Exercise 1.4.6. On Rn, we consider the divergence form operator

Lf = div(σ∇f),

where σ is a smooth field of positive and symmetric matrices that satisfies

a‖x‖2 ≤ 〈x, σx〉 ≤ b‖x‖2, x ∈ Rn,

for some constant 0 < a ≤ b. Show that with respect to the Lebesgue measure, the operator
L is essentially self-adjoint on C∞0 (Rn)

Exercise 1.4.7. On Rn, we consider the Schrödinger type operator

H = L− V,
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where L is a diffusion operator and V : Rn → R is a smooth function. We denote

Γ(f, g) =
1

2
(L(fg)− fLg − gLf) .

Show that if there exists an increasing sequence hn ∈ C∞0 (Rn), 0 ≤ hn ≤ 1, such that
hn ↗ 1 on Rn, and ||Γ(hn, hn)||∞ → 0, as n → ∞ and that if V is bounded from below
then H is essentially self-adjoint on C∞0 (Rn).
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Chapter 2

Markovian semigroups and
Dirichlet forms

Let (X,B) be a measurable space. We say that (X,B) is a good measurable space if there
is a countable family generating B and if every finite measure γ on (X ×X,B⊗B) can be
decomposed as

γ(dxdy) = k(x, dy)γ1(dx)

where γ1 is the projection of γ on the first coordinate and k is a kernel, i.e k(x, ·) is a
finite measure on (X,B) and x→ k(x,A) is measurable for every A ∈ B.
For instance, if X is a Polish space (or a Radon space) equipped with its Borel σ-field,
then it is a good measurable space.
Throughout the chapter, we will consider (X,B, µ) to be a good measurable space equipped
with a σ-finite measure µ.

2.1 Markovian semigroups

Definition 2.1.1. Let (Pt)t≥0 be a strongly continuous self-adjoint contraction semigroup
on L2(X,µ). The semigroup (Pt)t≥0 is called Markovian if and only if for every f ∈
L2(X,µ) and t ≥ 0:

1.
f ≥ 0, a.e =⇒ Ptf ≥ 0, a.e .

2.
f ≤ 1, a.e =⇒ Ptf ≤ 1, a.e .

We note that if (Pt)t≥0 is Markovian, then for every f ∈ L2(X,µ) ∩ L∞(X,µ),

‖Ptf‖L∞(X,µ) ≤ ‖f‖L∞(X,µ).

As a consequence (Pt)t≥0 can be extended to a contraction semigroup defined on all of
L∞(X,µ).
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Definition 2.1.2. A transition function {pt, t ≥ 0} on X is a family of kernels

pt : X × B → [0, 1]

such that:

1. For t ≥ 0 and x ∈ X, pt(x, ·) is a finite measure on X;

2. For t ≥ 0 and A ∈ B the application x→ pt(x,A) is measurable;

3. For s, t ≥ 0, a.e. x ∈ X and A ∈ B,

pt+s(x,A) =

∫
X
pt(y,A)ps(x, dy). (2.1.1)

The relation (2.1.1) is often called the Chapman-Kolmogorov relation

Theorem 2.1.3 (Heat kernel measure). Let (Pt)t≥0 be a strongly continuous self-adjoint
contraction Markovian semigroup on L2(X,µ). There exists a transition function {pt, t ≥
0} on X such that for every f ∈ L∞(X,µ) and a.e. x ∈ X

Ptf(x) =

∫
X
f(y)pt(x, dy), t > 0. (2.1.2)

This transition function is called the heat kernel measure associated to (Pt)t≥0.

The proof relies on the following lemma sometimes called the bi-measure theorem. A set
function ν : B⊗B → [0,+∞) is called a bi-measure, if for every A ∈ B, ν(A, ·) and ν(·, A)
are measures.

Lemma 2.1.4. If ν : B ⊗ B → [0,+∞) is a bi-measure, then there exists a measure γ on
B ⊗ B such that for every A,B ∈ B,

γ(A×B) = ν(A,B).

Proof of Theorem 2.1.3. We assume that µ is finite and let as an exercise the extension
to σ-finite measures. For t > 0, we consider the set function

νt(A,B) =

∫
X

1APt1Bdµ.

Since Pt is supposed to be Markovian, it is a bi-measure. From the bi-measure theorem,
there exists a measure γt on B ⊗ B such that for every A,B ∈ B,

γt(A×B) = νt(A,B) =

∫
X

1APt1Bdµ.

The projection of γt on the first coordinate is (Pt1)dµ, thus from the measure decompo-
sition theorem, γt can be decomposed as

γt(dxdy) = pt(x, dy)µ(dx)
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for some kernel pt. One has then for every A,B ∈ B∫
X

1APt1Bdµ =

∫
A

∫
B
pt(x, dy)µ(dx),

from which it follows that for every f ∈ L∞(X,µ), and a.e. x ∈ X

Ptf(x) =

∫
X
f(y)pt(x, dy).

The relation

pt+s(x,A) =

∫
X
pt(y,A)ps(x, dy)

follows from the semigroup property.

Exercise 2.1.5. Prove Theorem 2.1.3 if µ is σ-finite.

Exercise 2.1.6. Show that for every non-negative measurable function F : X ×X → R,∫
X

∫
X
F (x, y)pt(x, dy)dµ(x) =

∫
X

∫
X
F (x, y)pt(y, dx)dµ(y). (2.1.3)

Definition 2.1.7. Let (Pt)t≥0 be a strongly continuous self-adjoint contraction Markovian
semigroup on L2(X,µ). We say that the semigroup {Pt}t∈[0,∞) admits a heat kernel if the
heat kernel measures have a density with respect to µ, i.e. there exists a measurable
function p : R>0 ×X ×X → R≥0, such that for every t > 0, a.e.x, y ∈ X, f ∈ L∞(X,µ),

Ptf(x) =

∫
X
pt(x, y)f(y)dµ(y).

If the heat kernel exists, we will often denote p(t, x, y) as pt(x, y) for t > 0 and a.e.
x, y ∈ X.

2.2 Dirichlet forms

Definition 2.2.1. A function v on X is called a normal contraction of the function u if
for almost every x, y ∈ X,

|v(x)− v(y)| ≤ |u(x)− u(y)| and |v(x)| ≤ |u(x)|.

Definition 2.2.2. Let (E ,F = dom(E)) be a densely defined closed symmetric form on
L2(X,µ). The form E is called a Dirichlet form if it is Markovian, that is, has the property
that if u ∈ F and v is a normal contraction of u then v ∈ F and

E(v, v) ≤ E(u, u).

The main theorem is the following.
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Theorem 2.2.3. Let (Pt)t≥0 be a strongly continuous self-adjoint contraction semigroup
on L2(X,µ). Then, (Pt)t≥0 is a Markovian semigroup if and only if the associated closed
symmetric form on L2(X,µ) is a Dirichlet form.

Proof. Let (Pt)t≥0 be a strongly continuous self-adjoint contraction Markovian semigroup
on L2(X,µ). There exists a transition function {pt, t ≥ 0} on X such that for every
u ∈ L∞(X,µ) and a.e. x ∈ X

Ptu(x) =

∫
X
u(y)pt(x, dy), t > 0.

Denote

kt(x) = Pt1(x) =

∫
X
pt(x, dy).

We observe that from the Markovian property of Pt, we have 0 ≤ kt ≤ 1 a.e. We have
then

1

2

∫
X

∫
X

(u(x)− u(y))2pt(x, dy)dµ(x) =

∫
X
u(x)2kt(x)dµ(x)−

∫
X
u(x)Ptu(x)dµ(x).

Therefore,

〈u− Ptu, u〉 =
1

2

∫
X

∫
X

(u(x)− u(y))2pt(x, dy)dµ(x) +

∫
X
u(x)2(1− kt(x))dµ(x).

Let us now assume that u ∈ F and that v is a normal contraction of u. One has∫
X

∫
X

(v(x)− v(y))2pt(x, dy)dµ(x) ≤
∫
X

∫
X

(u(x)− u(y))2pt(x, dy)dµ(x)

and ∫
X
v(x)2(1− kt(x))dµ(x) ≤

∫
X
u(x)2(1− kt(x))dµ(x).

Therefore,
〈v − Ptv, v〉 ≤ 〈u− Ptu, u〉

Since u ∈ F , one knows that 1
t 〈u−Ptu, u〉 converges to E(u) when t→ 0. Since 1

t 〈v−Ptv, v〉
is non-increasing and bounded it does converge when t→ 0. Thus v ∈ F and

E(v) ≤ E(u).

One concludes that E is Markovian.
Now, consider a Dirichlet form E and denote by Pt the associated semigroup in L2(X,µ)
and by A its generator. The main idea is to first prove that for λ > 0, the resolvent
operator (λId−A)−1 preserves the positivity of function. Then, we may conclude by the
fact that for f ∈ L2(X,µ), in the L2(X,µ) sense

Ptf = lim
n→+∞

(
Id− t

n
L

)−n
f.
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Let λ > 0. We consider on F the norm

‖f‖2λ = ‖f‖2L2(X,µ) + λE(f, f)

From the Markovian property of E , if u ∈ F , then |u| ∈ F and

E(|u|, |u|) ≤ E(u, u). (2.2.1)

We consider the bounded operator

Rλ = (Id− λA)−1

that goes from L2(X,µ) to D(A) ⊂ F . For f ∈ F and g ∈ L2(X,µ) with g ≥ 0, we have

〈|f |,Rλg〉λ = 〈|f |,Rλg〉L2(X,µ) − λ〈|f |, ARλg〉L2(X,µ)

= 〈|f |, (Id− λA)Rλg〉L2(X,µ)

= 〈|f |, g〉L2(X,µ)

≥ |〈f, g〉L2(X,µ)|
≥ |〈f,Rλg〉λ|.

Moreover, from inequality (2.2.1), for f ∈ F ,

‖ |f | ‖2λ = ‖ |f | ‖2L2(X,µ) + λE(|f |, |f |)
≤ ‖f‖2L2(X,µ) + λE(f, f)

≤ ‖f‖2λ.

By taking f = Rλg in the two above sets of inequalities, we draw the conclusion

|〈Rλg,Rλg〉λ| ≤ 〈|Rλg|,Rλg〉λ ≤ ‖ |Rλg| ‖λ‖Rλg‖λ ≤ |〈Rλg,Rλg〉λ|.

The above inequalities are therefore equalities which implies

Rλg = |Rλg|.

As a conclusion if g ∈ L2(X,µ) is a.e. ≥ 0, then for every λ > 0, (Id − λA)−1g ≥ 0 a.e..
Thanks to the spectral theorem, in L2(X,µ),

Ptg = lim
n→+∞

(
Id− t

n
A

)−n
g.

By passing to a subsequence that converges pointwise almost surely, we deduce that Ptg ≥
0 almost surely. The proof of

f ≤ 1, a.e =⇒ Ptf ≤ 1, a.e .

follows the same lines:
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• The first step is to observe that if 0 ≤ f ∈ F , then 1 ∧ f and moreover

E(1 ∧ f, 1 ∧ f) ≤ E(f, f).

• Let f ∈ L2(X,µ) satisfy 0 ≤ f ≤ 1 and set g = Rλf = (Id − λA)−1f ∈ F and
h = 1∧ g. According to the first step, h ∈ F and E(h, h) ≤ E(g, g). Now, we observe
that:

‖g − h‖2λ
=‖g‖2λ − 2〈g, h〉λ + ‖h‖2λ
=〈Rλf, f〉L2(X,µ) − 2〈f, h〉L2(X,µ) + ‖h‖2L2(X,µ) + λE(h, h)

=〈Rλf, f〉L2(X,µ) − ‖f‖2L2(X,µ) + ‖f − h‖2L2(X,µ) + λE(h, h)

≤〈Rλf, f〉L2(X,µ) − ‖f‖2L2(X,µ) + ‖f − g‖2L2(X,µ) + λE(g, g) = 0.

As a consequence g = h, that is 0 ≤ g ≤ 1.

• The previous step shows that if f ∈ L2(X,µ) satisfies 0 ≤ f ≤ 1 then for every
λ > 0, 0 ≤ (Id− λL)−1f ≤ 1. Thanks to spectral theorem, in L2(X,µ),

Ptf = lim
n→+∞

(
Id− t

n
L

)−n
f.

By passing to a subsequence that converges pointwise almost surely, we deduce that
0 ≤ Ptf ≤ 1 almost surely.

2.3 The Lp theory of heat semigroups

Our goal, in this section, is to define, for 1 ≤ p ≤ +∞, Pt on Lp(X,µ). This may be done
in a natural way by using the Riesz-Thorin interpolation theorem that we recall below.

Theorem 2.3.1 (Riesz-Thorin interpolation theorem). Let 1 ≤ p0, p1, q0, q1 ≤ ∞, and
θ ∈ (0, 1). Define 1 ≤ p, q ≤ ∞ by

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
.

If T is a linear map such that

T : Lp0 → Lq0 , ‖T‖Lp0→Lq0 = M0

T : Lp1 → Lq1 , ‖T‖Lp1→Lq1 = M1,
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then, for every f ∈ Lp0 ∩ Lp1,

‖Tf‖q ≤M1−θ
0 M θ

1 ‖f‖p.
Hence T extends uniquely as a bounded map from Lp to Lq with

‖T‖Lp→Lq ≤M1−θ
0 M θ

1 .

Remark 2.3.2. The statement that T is a linear map such that

T : Lp0 → Lq0 , ‖T‖Lp0→Lq0 = M0

T : Lp1 → Lq1 , ‖T‖Lp1→Lq1 = M1,

means that there exists a map T : Lp0 ∩ Lp1 → Lq0 ∩ Lq1 with

sup
f∈Lp0∩Lp1 ,‖f‖p0≤1

‖Tf‖q0 = M0

and
sup

f∈Lp0∩Lp1 ,‖f‖p1≤1
‖Tf‖q1 = M1.

In such a case, T can be uniquely extended to bounded linear maps T0 : Lp0 → Lq0 ,
T1 : Lp1 → Lq1. With a slight abuse of notation, these two maps are both denoted by T in
the theorem.

Remark 2.3.3. If f ∈ Lp0 ∩ Lp1 and p is defined by 1
p = 1−θ

p0
+ θ

p1
, then by Hölder’s

inequality, f ∈ Lp and
‖f‖p ≤ ‖f‖1−θp0 ‖f‖θp1 .

We now are in position to state the following theorem:

Theorem 2.3.4. Let (Pt)t≥0 be a strongly continuous self-adjoint contraction Markovian
semigroup on L2(X,µ). The space L1 ∩L∞ is invariant under Pt and Pt may be extended

from L1 ∩L∞ to a contraction semigroup (P
(p)
t )t≥0 on Lp for all 1 ≤ p ≤ ∞: For f ∈ Lp,

‖Ptf‖Lp ≤ ‖f‖Lp .
These semigroups are consistent in the sense that for f ∈ Lp ∩ Lq,

P
(p)
t f = P

(q)
t f.

Proof. If f, g ∈ L1 ∩ L∞ which is a subset of L1 ∩ L∞, then,∣∣∣∣∫
X

(Ptf)gdµ

∣∣∣∣ =

∣∣∣∣∫
X
f(Ptg)dµ

∣∣∣∣
≤ ‖f‖L1‖Ptg‖L∞
≤ ‖f‖L1‖g‖L∞ .

This implies
‖Ptf‖L1 ≤ ‖f‖L1 .

The conclusion follows then from the Riesz-Thorin interpolation theorem.
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Exercise 2.3.5. Show that if f ∈ Lp and g ∈ Lq with 1
p + 1

q = 1 then,∫
Rn
fP

(q)
t gdµ =

∫
Rn
gP

(p)
t fdµ.

Exercise 2.3.6.

1. Show that for each f ∈ L1, the L1-valued map t→ P
(1)
t f is continuous.

2. Show that for each f ∈ Lp, 1 < p < 2, the Lp-valued map t→ P
(p)
t f is continuous.

3. Finally, by using the reflexivity of Lp, show that for each f ∈ Lp and every p ≥ 1,

the Lp-valued map t→ P
(p)
t f is continuous.

We mention, that in general, the L∞ valued map t→ P
(∞)
t f is not continuous.

2.4 Diffusion operators as Markov operators

In this section, we consider a diffusion operator

L =
n∑

i,j=1

σij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
,

where bi and σij are continuous functions on Rn and for every x ∈ Rn, the matrix
(σij(x))1≤i,j≤n is a symmetric and non negative matrix. Our goal is to prove that if
L is essentially self-adjoint, then the semigroup it generates is Markovian. We will also
prove that this semigroup is solution of the heat equation associated to L.
As before, we will assume that there is Borel measure µ which is equivalent to the Lebesgue
measure and that symmetrizes L in the sense that for every smooth and compactly sup-
ported functions f, g : Rn → R, ∫

Rn
gLfdµ =

∫
Rn
fLgdµ.

Our first goal will be to prove that if L is essentially self-adjoint, then the semigroup it
generates in L2(Rn, µ) is Markovian. The key lemma is the so-called Kato inequality:

Lemma 2.4.1 (Kato inequality). Let L be a diffusion operator on Rn with symmetric and
invariant measure µ. Let u ∈ C∞0 (Rn). Define

sgn u = 0 if u(x) = 0,

=
u(x)

|u(x)| if u(x) 6= 0.

In the sense of distributions, we have the following inequality

L|u| ≥ (sgn u)Lu.

25



Proof. If φ is a smooth and convex function and if u is assumed to be smooth, it is readily
checked that

Lφ(u) = φ′(u)Lu+ φ′′(u)Γ(u, u) ≥ φ′(u)Lu.

By choosing for φ the function

φε(x) =
√
x2 + ε2, ε > 0,

we deduce that for every smooth function u ∈ C∞0 (Rn),

Lφε(u) ≥ u√
x2 + ε2

Lu.

As a consequence this inequality holds in the sense of distributions, that is for every
f ∈ Cc(Rn,R), f ≥ 0, ∫

Rn
fLφε(u)dµ ≥

∫
Rn
f

u√
u2 + ε2

Ludµ

Letting ε→ 0 gives the expected result.

From Kato inequality, it is relatively easy to see that if L is an essentially self-adjoint
diffusion operator, then the associated quadratic form is Markovian. As a consequence,
we deduce the following theorem.

Proposition 2.4.2. Let L be a diffusion operator on Rn with symmetric and invariant
measure µ. Assume that L is essentially self-adjoint, then the semigroup it generates is
Markovian.

Next, we connect the semigroup associated to a diffusion operator L to the parabolic
following Cauchy problem:

∂u

∂t
= Lu, u(0, x) = f(x).

In the remainder of the section, we assume that the diffusion operator L is elliptic with
smooth coefficients and that there exists an increasing sequence hn ∈ C∞0 (Rn), 0 ≤ hn ≤ 1,
such that hn ↗ 1 on Rn, and ||Γ(hn, hn)||∞ → 0, as n→∞. In particular, we know from
this assumption that the operator L is essentially self-adjoint.

Proposition 2.4.3. Let f ∈ Lp(Rn, µ), 1 ≤ p ≤ ∞, and let

u(t, x) = Ptf(x), t ≥ 0, x ∈ Rn.

Then u is smooth on (0,+∞)× Rn and is a strong solution of the Cauchy problem

∂u

∂t
= Lu, u(0, x) = f(x).
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Proof. For φ ∈ C∞0 ((0,+∞)× Rn), we have

∫
Rn×R

((
− ∂

∂t
− L

)
φ(t, x)

)
u(t, x)dµ(x)dt =

∫
R

∫
Rn

((
− ∂

∂t
− L

)
φ(t, x)

)
Ptf(x)dxdt

=

∫
R

∫
Rn
Pt

((
− ∂

∂t
− L

)
φ(t, x)

)
f(x)dxdt

=

∫
R

∫
Rn
− ∂

∂t
(Ptφ(t, x)f(x)) dxdt

= 0.

Therefore u is a weak solution of the equation ∂u
∂t = Lu. Since u is smooth it is also a

strong solution.

We now address the uniqueness of solutions.

Proposition 2.4.4. Let v(x, t) be a non negative function such that

∂v

∂t
≤ Lv, v(x, 0) = 0,

and such that for every t > 0,

‖v(·, t)‖Lp(Rn,µ) < +∞,

where 1 < p < +∞. Then v(x, t) = 0.

Proof. Let x0 ∈ X and h ∈ C∞0 (Rn). Since u is a subsolution with the zero initial data,
for any τ ∈ (0, T ), ∫ τ

0

∫
Rn
h2(x)vp−1(x, t)Lv(x, t)dµ(x)dt

≥
∫ τ

0

∫
Rn
h2(x)vp−1∂v

∂t
dµ(x)dt

=
1

p

∫ τ

0

∂

∂t

(∫
Rn
h2(x)vpdµ(x)

)
dt

=
1

p

∫
Rn
h2(x)vp(x, τ)dµ(x).

On the other hand, integrating by parts yields∫ τ

0

∫
Rn
h2(x)vp−1(x, t)Lv(x, t)dµ(x)dt

=−
∫ τ

0

∫
Rn

2hvp−1Γ(h, v)dµdt−
∫ τ

0

∫
X
h2(p− 1)vp−2Γ(v)dµdt.
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Observing that

0 ≤
(√

2

p− 1
Γ(h)v −

√
p− 1

2
Γ(v)h

)2

≤ 2

p− 1
Γ(h)v2 + 2Γ(h, v)hv +

p− 1

2
Γ(v)h2,

we obtain the following estimate.∫ τ

0

∫
Rn
h2(x)vp−1(x, t)Lv(x, t)dµ(x)dt

≤
∫ τ

0

∫
Rn

2

p− 1
Γ(h)vpdµdt−

∫ τ

0

∫
Rn

p− 1

2
h2vp−2Γ(v)dµdt

=

∫ τ

0

∫
Rn

2

p− 1
Γ(h)vpdµdt− 2(p− 1)

p2

∫ τ

0

∫
Rn
h2Γ(vp/2)dµdt.

Combining with the previous conclusion we obtain ,∫
X
h2(x)vp(x, τ)dµ(x)+

2(p− 1)

p

∫ τ

0

∫
Rn
h2Γ(vp/2)dµdt ≤ 2p

(p− 1)
‖Γ(h)‖2∞

∫ τ

0

∫
Rn
vpdµdt.

By using the previous inequality with an increasing sequence hn ∈ C∞0 (Rn), 0 ≤ hn ≤ 1,
such that hn ↗ 1 on Rn, and ||Γ(hn, hn)||∞ → 0, as n → ∞, and letting n → +∞, we
obtain

∫
X v

p(x, τ)dµ(x) = 0 thus v = 0.

As a consequence of this result, any solution in Lp(Rn, µ), 1 < p < +∞ of the heat
equation ∂u

∂t = Lu is uniquely determined by its initial condition, and is therefore of the
form u(t, x) = Ptf(x). We stress that without further conditions, this result fails when
p = 1 or p = +∞.

2.5 Sobolev inequality

In this lecture, we. study Sobolev inequalities on Dirichlet spaces. The approach we
develop is related to Hardy-Littlewood-Sobolev theory
The link between the Hardy-Littlewood-Sobolev theory and heat kernel upper bounds
is due to Varopoulos, but the proof I give below I learnt it from my colleague Ro-
drigoBañuelos. It bypasses the Marcinkiewicz interpolation theorem,that was originally
used by Varopoulos by using instead the Stein’s maximal ergodic lemma. The advantage
of the method is to get an explicit (non sharp) constant for the Sobolev inequality
Let (X,B) be a good measurable space equipped with a σ-finite measure µ. Let E be a
Dirichlet form on X. As usual, we denote by Pt the semigroup generated by Pt and we
assume Pt1 = 1.
We have the following so-called maximal ergodic lemma, which was first proved by Stein.
We give here a probabilistic proof since it comes with a nice constant but you can for
instance find the original (non probabilistic) proof here.
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Lemma 2.5.1. (Stein’s maximal ergodic theorem) Let p > 1. For f ∈ Lp(X,µ), denote
f∗(x) = supt≥0 |Ptf(x)|. We have ‖f∗‖Lp(X,µ) ≤ p

p−1‖f‖Lp(X,µ).

Proof. For x ∈ X, we denote by (Xx
t )t≥0 the Markov process associated with the semigroup

Pt and started at x (we assume that such process exists without commenting on the exact
assumptions). We fix T > 0. By construction, for t ≤ T , we have,

PT−tf(Xx
T ) = E

(
f(Xx

2T−t)|Xx
T

)
,

and thus
P2(T−t)f(Xx

T ) = E
(
(PT−tf)(Xx

2T−t)|Xx
T

)
.

As a consequence, we obtain

sup
0≤t≤T

|P2(T−t)f(Xx
T )| ≤ E

(
sup

0≤t≤T
|(PT−tf)(Xx

2T−t)| | Xx
T

)
.

Jensen’s inequality yields then

sup
0≤t≤T

|P2(T−t)f(Xx
T )|p ≤ E

(
sup

0≤t≤T
|(PT−tf)(Xx

2T−t)|p | Xx
T

)
.

We deduce

E

(
sup

0≤t≤T
|P2(T−t)f(Xx

T )|p
)
≤ E

(
sup

0≤t≤T
|(PT−tf)(Xx

2T−t)|p
)
.

Integrating the inequality with respect to the measure µ, we obtain∥∥∥∥∥ sup
0≤t≤T

|P2(T−t)f |
∥∥∥∥∥
p

≤
(∫

X
E

(
sup

0≤t≤T
|(PT−tf)(Xx

2T−t)|p
)
dµ(x)

)1/p

.

By reversibility, we get then∥∥∥∥∥ sup
0≤t≤T

|P2(T−t)f |
∥∥∥∥∥
p

≤
(∫

X
E

(
sup

0≤t≤T
|(PT−tf)(Xx

t )|p
)
dµ(x)

)1/p

.

We now observe that the process (PT−tf)(Xx
t ) is martingale and thus Doob’s maximal

inequality gives

E

(
sup

0≤t≤T
|(PT−tf)(Xx

t )|p
)1/p

≤ p

p− 1
E (|f(Xx

T )|p)1/p .

The proof is complete.
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We now turn to the theorem by Varopoulos. In the sequel, we assume that the semigroup
Pt admits a measurable heat kernel p(x, y, t).

Theorem 2.5.2. Let n > 0, 0 < α < n, and 1 < p < n
α . If there exists C > 0 such that

for every t > 0, x, y ∈ X, p(x, y, t) ≤ C
tn/2

, then for every f ∈ Lp(X,µ),

‖(−L)−α/2f‖ np
n−pα

≤
(

p

p− 1

)1−α/n 2nCα/n

α(n− pα)Γ(α/2)
‖f‖p,

where L is the generator of E.

Proof. We first observe that the bound

p(x, y, t) ≤ C

tn/2
,

implies that

|Ptf(x)| ≤ C1/p

tn/2p
‖f‖p

. Denote
Iαf(x) = (−L)−α/2f(x)

. We have

Iαf(x) =
1

Γ(α/2)

∫ +∞

0
tα/2−1Ptf(x)dt

Pick δ > 0, to be later chosen, and split the integral in two parts:

Iαf(x) = Jαf(x) +Kαf(x),

where

Jαf(x) =
1

Γ(α/2)

∫ δ

0
tα/2−1Ptf(x)dt

and

Kαf(x) =
1

Γ(α/2)

∫ +∞

δ
tα/2−1Ptf(x)dt.

We have

|Jαf(x)| ≤ 1

Γ(α/2)

∫ +∞

0
tα/2−1dt|f∗(x)| = 2

αΓ(α/2)
δα/2|f∗(x)|.

On the other hand,

|Kαf(x)| ≤ 1

Γ(α/2)

∫ +∞

δ
tα/2−1|Ptf(x)|dt

≤ C1/p

Γ(α/2)

∫ +∞

δ
t
α
2
− n

2p
−1
dt‖f‖p

≤ C1/p

Γ(α/2)

1

−α
2 + n

2p

δ
α
2
− n

2p ‖f‖p.
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We deduce

|Iαf(x)| ≤ 2

αΓ(α/2)
δα/2|f∗(x)|+ C1/p

Γ(α/2)

1

−α
2 + n

2p

δ
α
2
− n

2p ‖f‖p.

Optimizing the right hand side of the latter inequality with respect to δ yields

|Iαf(x)| ≤ 2nCα/n

α(n− pα)Γ(α/2)
‖f‖αp/np |f∗(x)|1−pα/n.

The proof is then completed by using Stein’s maximal ergodic theorem.

A special case, of particular interest, is when α = 1 and p = 2. We get in that case the
following Sobolev inequality:

Theorem 2.5.3. Let n > 2. If there exists C > 0 such that for every t > 0, x, y ∈ X,
p(x, y, t) ≤ C

tn/2
, then for every f ∈ F ,

‖f‖ 2n
n−2
≤ 21−1/n 2nC1/n

(n− 2)
√
π

√
E(f).

We mention that the constant in the above Sobolev inequality is not sharp even in the
Euclidean case.
In many situations, heat kernel upper bounds with a polynomial decay are only available
in small times the following result is thus useful:

Theorem 2.5.4. Let n > 0, 0 < α < n, and 1 < p < n
α . If there exists C > 0 such that

for every 0 < t ≤ 1, x, y ∈ X,

p(x, y, t) ≤ C

tn/2
,

then, there is constant C ′ such that for every f ∈ Lp(X,µ),

‖(−L+ 1)−α/2f‖ np
n−pα

≤ C ′‖f‖p.

Proof. We apply the Varopoulos theorem to the semigroup Qt = e−tPt. Details are let to
the reader

The following corollary shall be later used:

Corollary 2.5.5. Let n > 2. If there exists C > 0 such that for every 0 < t ≤ 1, x, y ∈ X,

p(x, y, t) ≤ C

tn/2
,

then there is constant C ′ such that for every f ∈ F ,

‖f‖ 2n
n−2
≤ C ′

(√
E(f) + ‖f‖2

)
.
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Chapter 3

Dirichlet spaces with Gaussian or
sub-Gaussian heat kernel
estimates

Let (X, d, µ) be a locally compact and complete metric measure space where µ is a Radon
measure supported on X. Let now (E ,F = dom(E)) be a Dirichlet form on X. Through-
out the chapter, we assume the following:

• B(x, r) := {y ∈ X | d(x, y) < r} has compact closure for any x ∈ X and any
r ∈ (0,∞);

We also assume that the semigroup {Pt} associated with E is stochastically complete (i.e.
Pt1 = 1) and has a continuous heat kernel pt(x, y) satisfying, for some c1, c2, c3, c4 ∈ (0,∞)
and dH ≥ 1, dW ∈ [2,+∞),

c1t
−dH/dW exp

(
−c2

(d(x, y)dW

t

) 1
dW−1

)
≤ pt(x, y) ≤ c3t

−dH/dW exp

(
−c4

(d(x, y)dW

t

) 1
dW−1

)
(3.0.1)

for µ×µ-a.e. (x, y) ∈ X ×X and each t ∈
(
0,+∞

)
.

The exact values of c1, c2, c3, c4 are irrelevant in our analysis. However, the parameters
dH and dW are important; they are metric invariant of the space. We will see that the
parameter dH is the volume growth exponent. The parameter dW is more subtle and is
called the walk dimension. When dW = 2, one speaks of Gaussian estimates and when
dW > 2, one speaks then of sub-Gaussian estimates.

3.1 Examples

3.1.1 Uniformly elliptic divergence form diffusion operators

On Rn, we consider the divergence form operator

Lf = −div(σ∇f),
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where σ is a smooth field of positive and symmetric matrices that satisfies

a‖x‖2 ≤ 〈x, σ(y)x〉 ≤ b‖x‖2, x, y ∈ Rn,

for some constant 0 < a ≤ b. We know that with respect to the Lebesgue measure, the
operator L is essentially self-adjoint on C∞0 (Rn) and its self-adjoint extension (still denoted
L) is the generator of the Dirichlet form

E(f) =
n∑

i,j=1

∫
Rn
σij(x)

∂f

∂xi

∂f

∂xj
dx, f ∈W 1,2(Rn).

Theorem 3.1.1 (Nash, Aronson, Davies). The Dirichlet form E admits a heat kernel
satisfying the Gaussian heat kernel estimates (3.0.1) with dW = 2 and dH = n and the
distance is the Euclidean distance.

3.1.2 Riemannian manifolds

Let (M, g) be a complete n-dimensional Riemannian manifold with Riemannian volume
measure µ and Riemannian distance d. We assume that the Ricci curvature of M is non
negative. We consider the standard Dirichlet form E on M, which is obtained by closing
the bilinear form

E(f, g) =

∫
M
〈∇f,∇g〉dµ, f, g ∈ C∞0 (M).

It is well-known result by Li and Yau that the heat semigroup Pt admits a smooth heat
kernel function pt(x, y) on [0,∞)×M×M for which there are constants c1, c2, C > 0 such
that whenever t > 0 and x, y ∈ X,

1

C

e−c1d(x,y)2/t√
µ(B(x,

√
t))µ(B(y,

√
t))
≤ pt(x, y) ≤ C e−c2d(x,y)2/t√

µ(B(x,
√
t))µ(B(y,

√
t))
.

From the Bishop-Gromov comparison theorem, it is known that the non-negative Ricci
curvature lower bound assumption implies

µ(B(x,R)) ≤ CRn.

If we assume that there is a lower bound

µ(B(x,R)) ≥ cRn,

then pt(x, y) therefore admits Gaussian heat kernel estimates (dH = n, dW = 2).
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3.1.3 Carnot groups

A Carnot group of step N is a simply connected Lie group G whose Lie algebra can be
stratified as follows:

g = V1 ⊕ ...⊕ VN ,
where

[Vi,Vj ] = Vi+j
and

Vs = 0, for s > N.

From the above properties, Carnot groups are nilpotent. The number

Q =
N∑
i=1

i dimVi

is called the homogeneous dimension of G.
Let V1, ..., Vd be a basis of the vector space V1. The vectors Vi’s can be seen as left invariant
vector fields on G. The left invariant sub-Laplacian on G is the operator:

L =
d∑
i=1

V 2
i .

It is hypoelliptic and essentially self-adjoint on the space of smooth and compactly sup-
ported function f : G→ R with the respect to the Haar measure µ of G. The heat semi-
group (Pt)t≥0 on G, defined through the spectral theorem, is then seen to be a Markov
semigroup. By hypoellipticity of L, this heat semigroup admits a heat kernel denoted by
pt(g, g

′). It is then known that pt satisfies the double-sided Gaussian bounds:

C−1

tQ/2
exp

(
−C1d(g, g′)2

t

)
≤ pt(g, g′) ≤

C

tQ/2
exp

(
−C2

d(g, g′)2

t

)
, (3.1.1)

for some constants C,C1, C2 > 0. Here d(g, g′) denotes the Carnot-Carathéodory distance
from g to g′ on G which is defined by

d(g, g′) = sup

{
|f(g)− f(g′)|,

d∑
i=1

(Vif)2 ≤ 1

}
.

In that case, we therefore have dH = Q and dW = 2.
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Figure 2.2. A part of an infinite Sierpiński gasket.

0

3

5

6

-

6

Figure 2.3. An illustration to the computation of the spectrum on the infi-
nite Sierpiński gasket. The curved lines show the graph of the function R(·),
the vertical axis contains the spectrum of σ(−∆Γ0) and the horizontal axis
contains the spectrum σ(−∆).

the preimages of 5 and 3 under the inverse iterations of R. In this case formula (2.14) is
the same as the formulas for eigenprojections in [41]. The illustration to the computation
of the spectrum in Theorem 2.3 is shown in Figure 2.3, where the graph of the function
R is shown schematically and the location of eigenvalues is denoted by small crosses. The
spectrum σ(−∆) is shown on the horizontal axis and the set of eigenvalues Σ0 of −∆Γ0 is
shown on the vertical axis.
A different infinite Sierpiński gasket fractafold can be constructed using two copies of an

infinite Sierpiński gasket with a boundary point, and joining these copies at the boundary.
This fractal first was considered in [2], and has a natural axis of symmetry between left and
right copies. Therefore we can consider symmetric and anti-symmetric functions with respect
to these symmetries. It was proved in [41] that the spectrum of the Laplacian restricted to
the symmetric part is pure point with a complete set of eigenfunctions with compact support.
For the anti-symmetric part the compactly supported eigenfunctions are not complete, and
it was proved in [31] that the Laplacian on Γ0 has a singularly continuous component in
the spectrum, supported on JR, of spectral multiplicity one. As a corollary of these and our
results we have the following proposition.

Figure 3.1: A part of an infinite, or unbounded, Sierpiński gasket.

Figure 3.2: Graph approximation of the Sierpiński gasket.

3.1.4 Unbounded Sierpiński gasket

If X is the unbounded Sierpiński gasket, one considers on X the distance d induced by
the Euclidean distance in R2. The Hausdorff measure on X is denoted by µ.

En(f) :=
∑

x,y∈Γn,x∼y
(f(x)− f(y))2

E(f) := lim
n→+∞

(
5

3

)n
En(f)

F :=
{
f ∈ L2(X,µ), E(f) < +∞

}
Theorem 3.1.2 (Kigami, Barlow-Perkins). The quadratic form E with domain F is a
Dirichlet form on L2(X,µ) which admits a heat kernel satisfying the sub-Gaussian heat
kernel estimates (3.0.1) with dW = ln 5

ln 2 and dH = ln 3
ln 2 .

3.2 Ahlfors regularity

We consider in this section the general framework outlined at the beginning of the chapter.
Our goal in the section is to prove that the space (X, d, µ) is Ahlfors dH -regular. As a
consequence, the number dH is a metric invariant.

Theorem 3.2.1. The space (X, d, µ) is Ahlfors dH-regular, i.e. there exist constants
c, C > 0 such that for every x ∈ X, R ≥ 0,

cRdH ≤ µ(B(x,R)) ≤ CRdH .
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We divide onto several lemmas.

Lemma 3.2.2. There exists a constant C > 0 such that for every x ∈ X, R ≥ 0,

µ(B(x,R)) ≤ CRdH .

Proof. ∫
X
pt(x, y)dµ(y)

≥
∫
B(x,R)

pt(x, y)dµ(y)

≥c1t
−dH/dW

∫
B(x,R)

exp

(
−c2

(d(x, y)dW

t

) 1
dW−1

)
dµ(y)

≥c1t
−dH/dW exp

(
−c2

(RdW
t

) 1
dW−1

)
µ(B(x,R)).

Since
∫
X pt(x, y)dµ(y) = 1, one deduces

µ(B(x,R)) ≤ 1

c1
tdH/dW exp

(
c2

(RdW
t

) 1
dW−1

)
.

Choosing t = RdW yields the expected result.

The second lemma is the following:

Lemma 3.2.3. There exists a constant C > 0 such that for every x ∈ X, t > 0, R > 0,∫
X\B(x,r)

pt(x, y)dµ(y) ≤ C exp

(
− 1

C

(rdW
t

) 1
dW−1

)
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Proof. ∫
X\B(x,r)

pt(x, y)dµ(y) (3.2.1)

≤ c3

tdH/dW

∫
X\B(x,r)

exp

(
−c4

(d(x, y)dW

t

) 1
dW−1

)
dµ(y)

=
c3

tdH/dW

∞∑
k=1

∫
B(x,2kr)\B(x,2k−1r)

exp

(
−c4

(d(x, y)dW

t

) 1
dW−1

)
dµ(y)

≤ c3

tdH/dW

∞∑
k=1

µ
(
B(x, 2kr)

)
exp

(
−c4

(2(k−1)dW rdW

t

) 1
dW−1

)

≤ C

tdH/dW

∞∑
k=1

rdH2kdH exp

(
−c4

(rdW
t

) 1
dW−1

(
2

dW
dW−1

)k−1
)

= C
∞∑
k=1

2dH
(rdW

t
2dW (k−1)

)dH/dW
exp

(
−2
− dW
dW−1 c4

(rdW
t

2dW k
) 1
dW−1

)

≤ C
∞∑
k=1

∫ (rdW /t)(2dW )k

(rdW /t)(2dW )k−1

sdH/dW exp
(
−2
− dW
dW−1 c4s

1
dW−1

) 1

(dW log 2)s
ds

= C

∫ ∞
rdW /t

sdH/dW−1 exp
(
−2
− dW
dW−1 c4s

1
dW−1

)
ds

≤ C exp

(
− 1

C

(rdW
t

) 1
dW−1

)
. (3.2.2)

The result follows then from the last following lemma:

Lemma 3.2.4. There exists a constant c > 0 such that for every x ∈ X, R ≥ 0,

µ(B(x,R)) ≥ cRdH .

Proof. On one hand∫
B(x,r)

pt(x, y)dµ(y)

≤c3t
−dH/dW

∫
B(x,r)

exp

(
−c4

(d(x, y)dW

t

) 1
dW−1

)
dµ(y)

≤c3t
−dH/dWµ(B(x, r)).
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On the other hand ∫
B(x,r)

pt(x, y)dµ(y)

=1−
∫
X\B(x,r)

pt(x, y)dµ(y)

≥1− C exp

(
− 1

C

(rdW
t

) 1
dW−1

)
We conclude

µ(B(x, r)) ≥ ctdH/dW
(

1− C exp

(
− 1

C

(rdW
t

) 1
dW−1

))
.

Choosing t = δrdW with δ > 0 small enough one gets the expected result.

3.3 Domain of the form

In this section, we still consider a Dirichlet form E with domain F on a metric measure
space (X, d, µ) whose heat kernel satisfies the sub-Gaussian estimates (3.0.1).
In what follows, if Λ1 and Λ2 are two functionals defined on a domain D, we will write

Λ1(f) ' Λ2(f)

if there exist constants c, C > 0 such that for every f ∈ D

cΛ1(f) ≤ Λ2(f) ≤ CΛ1(f).

Our goal is to prove the following theorem.

Theorem 3.3.1. On F

E(f) ' lim inf
r→0+

1

rdW

∫
X

∫
B(x,r)

|f(y)− f(x)|2
µ(B(x, r))

dµ(y) dµ(x)

' lim sup
r→0+

1

rdW

∫
X

∫
B(x,r)

|f(y)− f(x)|2
µ(B(x, r))

dµ(y) dµ(x)

' sup
0<r≤1

1

rdW

∫
X

∫
B(x,r)

|f(y)− f(x)|2
µ(B(x, r))

dµ(y) dµ(x)

' sup
r>0

1

rdW

∫
X

∫
B(x,r)

|f(y)− f(x)|2
µ(B(x, r))

dµ(y) dµ(x)

Note that it is enough to prove that

c sup
r>0

1

rdW

∫
X

∫
B(x,r)

|f(y)− f(x)|2
µ(B(x, r))

dµ(y) dµ(x) ≤ E(f) ≤ C lim inf
r→0+

1

rdW

∫
X

∫
B(x,r)

|f(y)− f(x)|2
µ(B(x, r))

dµ(y) dµ(x)

We first prove the lower bound:
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Lemma 3.3.2. For f ∈ F ,

c sup
r>0

1

rdW

∫
X

∫
B(x,r)

|f(y)− f(x)|2
µ(B(x, r))

dµ(y) dµ(x) ≤ E(f).

Proof. We first prove the lower bound. For s, t > 0 and α > 0,∫
X

∫
X
|f(x)− f(y)|2pt(x, y)dµ(x)dµ(y)

≥
∫
X

∫
B(y,s)

|f(x)− f(y)|2pt(x, y)dµ(x)dµ(y)

≥c1t
−dH/dW

∫
X

∫
B(y,s)

|f(x)− f(y)|2 exp

(
−c2

(d(x, y)dW

t

) 1
dW−1

)
dµ(x)dµ(y)

≥c1t
−dH/dW exp

(
−c2

(sdW
t

) 1
dW−1

)∫
X

∫
B(y,s)

|f(x)− f(y)|2dµ(x)dµ(y).

Therefore we have

1

sdH+dW

∫
X

∫
B(y,s)

|f(x)− f(y)|2dµ(x)dµ(y)

≤C tdH/dW

sdH+dW
exp

(
c2

(sdW
t

) 1
dW−1

)∫
X

∫
X
|f(x)− f(y)|2pt(x, y)dµ(x)dµ(y)

Choosing t = sdW , one deduces

1

sdH+dW

∫
X

∫
B(y,s)

|f(x)− f(y)|2dµ(x)dµ(y) ≤ C 1

sdW

∫
X

∫
X
|f(x)− f(y)|2psdW (x, y)dµ(x)dµ(y).

This yields

sup
r>0

1

rdW

∫
X

∫
B(x,r)

|f(y)− f(x)|2
µ(B(x, r))

dµ(y) dµ(x) ≤ C sup
t>0

1

t

∫
X

∫
X
|f(x)−f(y)|2pt(x, y)dµ(x)dµ(y)

One now has ∫
X

∫
X
|f(x)− f(y)|2pt(x, y)dµ(x)dµ(y)

=

∫
X

∫
X

(f(x)2 − 2f(x)f(y) + f(y)2)pt(x, y)dµ(x)dµ(y)

=

∫
X

(Ptf
2)(y)dµ(y)− 2

∫
X
f(x)Ptf(x)dµ(x) +

∫
X

(Ptf
2)(x)dµ(x)

=2〈f, f − Ptf〉L2

Since 1
t 〈f, f − Ptf〉L2 is decreasing and converges to E(f) when t→ 0, one concludes

sup
r>0

1

rdW

∫
X

∫
B(x,r)

|f(y)− f(x)|2
µ(B(x, r))

dµ(y) dµ(x) ≤ CE(f).
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Our theorem follows therefore from the following lemma:

Lemma 3.3.3. For f ∈ F

E(f) ≤ C lim inf
r→0+

1

rdW

∫
X

∫
B(x,r)

|f(y)− f(x)|2
µ(B(x, r))

dµ(y) dµ(x)

Proof. We first note that from the previous proof

E(f) = lim
t→0

1

2t

∫
X

∫
X
pt(x, y)|f(x)− f(y)|2dµ(x) dµ(y)

Write

Ψ(t) =
1

t

∫
X

∫
X
pt(x, y)|f(x)− f(y)|2 dµ(x) dµ(y)

and estimate as follows. Let r = δt1/dW . For d(x, y) < δt1/dW the sub-Gaussian upper
bound (3.0.1) implies pt(x, y) ≤ Ct−dH/dW , so that

1

t

∫
X

∫
B(y,r)

pt(x, y)|f(x)− f(y)|2 dµ(x) dµ(y)

≤ C

t1+dH/dW

∫
X

∫
B(y,r)

|f(x)− f(y)|2 dµ(x) dµ(y)

≤ C

t1+dH/dW

∫
X

∫
B(y,δt1/dW )

|f(x)− f(y)|2 dµ(x) dµ(y) := Φ(t).

For d(x, y) > δt1/dW we instead use the sub-Gaussian bounds (3.0.1) to see there are
c, C > 1 such that

pt(x, y) ≤ C exp

(
−
(c4

2

)(d(x, y)dW

t

) 1
dW−1

)
pct(x, y) ≤ C exp

(
−c′δ

dW
dW−1

)
pct(x, y)

and therefore

Ψ(t) ≤ Φ(t) +
1

t

∫
X

∫
X\B(y,r)

pt(x, y)|f(x)− f(y)|2 dµ(x) dµ(y)

≤ Φ(t) +
C

t
exp
(
−c′δ

dW
dW−1

) ∫
X

∫
X\B(y,r)

pct(x, y)|f(x)− f(y)|2 dµ(x) dµ(y)

= Φ(t) +AΨ(ct) (3.3.1)

where A is a constant that can be made as small as we desire by making δ large enough.
We fix δ so that A < 1

2 . By letting t→ 0, one gets

E(f) ≤ lim inf
t→0+

1

t1+dH/dW

∫
X

∫
B(y,δt1/dW )

|f(x)− f(y)|2 dµ(x) dµ(y)
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For λ > 0, we define the space KSλ,2(X) as the collection of all functions f ∈ L2(X,µ)
for which

‖f‖p
KSλ,2(X)

:= lim sup
r→0+

∫
X

∫
B(x,r)

|f(y)− f(x)|2
r2λµ(B(x, r))

dµ(y) dµ(x) < +∞.

The L2–Korevaar-Schoen critical exponents of the space are then defined as:

λ∗2 = inf
{
λ > 0 : KSλ,2(X) is trivial

}
,

λ†2 = inf
{
λ > 0 : KSλ,2(X) is dense in L2

}
,

where by trivial we mean that KSλ,2(X) contains only almost everywhere constant func-
tions.

Corollary 3.3.4.

λ∗2 = λ†2 =
dW
2
.

Proof. We know that KSdW /2,2(X) = F is dense in L2 and from the previous theorem
f ∈ KSλ,2(X) with λ > dW

2 implies that E(f) = 0 and thus f constant.

3.4 Regular Dirichlet forms, Energy measures

In this section, let X be a locally compact and complete metric space equipped with a
Radon measure µ supported on X. Let (E ,F = dom(E)) be a Dirichlet form on X. We
assume throughout the section that the heat semigroup Pt is stochastically complete but
we do not necessarily assume the sub-Gaussian estimates. We denote by Cc(X) the vector
space of all continuous functions with compact support in X and C0(X) its closure with
respect to the supremum norm. A core for (X,µ, E ,F) is a subset C of Cc(X) ∩ F which
is dense in Cc(X) in the supremum norm and dense in F in the norm(

‖f‖2L2(X,µ) + E(f, f)
)1/2

.

Definition 3.4.1. The Dirichlet form E is called regular if it admits a core.

Lemma 3.4.2. For f, g ∈ F ∩ L∞(X,µ), fg ∈ F and

E(fg)1/2 ≤ ‖f‖∞E(g)1/2 + ‖g‖∞E(f)1/2

Theorem 3.4.3 (Energy measures). Assume that E is regular. For f ∈ F ∩ L∞(X,µ),
there exists a unique Radon measure on X denoted dΓ(f) so that for every φ ∈ F ∩Cc(X),∫

X
φdΓ(f) =

1

2
[2E(φf, f)− E(φ, f2)]

= lim
t→0

1

2t

∫
X

∫
X
φ(x)(f(x)− f(y))2pt(x, dy)dµ(x).
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Proof.∫
X

∫
X
φ(x)(f(x)− f(y))2pt(x, dy)dµ(x) = −〈(I − Pt)f2, φ〉+ 2〈(I − Pt)f, fφ〉

Lemma 3.4.4. Let f ∈ F . Then fn = min(n,max(−n, u)) ∈ F and E(f − fn)→ 0.

Lemma 3.4.5. For f, g ∈ F ∩ L∞(X,µ) and φ ∈ F ∩ Cc(X),∣∣∣∣∣
√∫

X
φdΓ(f)−

√∫
X
φdΓ(g)

∣∣∣∣∣
2

≤
∫
X
φdΓ(f − g) ≤ ‖φ‖L∞(X,µ)E(f − g)

Thanks to the previous lemmas, by approximation, one can define dΓ(f) for every f ∈ F .
For f, g ∈ F , one can define dΓ(f, g) by polarization.

Theorem 3.4.6 (Beurling-Deny). For u, v ∈ F

E(u, v) =

∫
X
dΓ(u, v).

Example 3.4.7 (Uniformly elliptic divergence form diffusion operators). On Rn, we con-
sider the divergence form operator

Lf = −div(σ∇f),

where σ is a smooth field of positive and symmetric matrices that satisfies

a‖x‖2 ≤ 〈x, σ(y)x〉 ≤ b‖x‖2, x, y ∈ Rn,

for some constant 0 < a ≤ b. Consider the Dirichlet form

E(f) =

n∑
i,j=1

∫
Rn
σij(x)

∂f

∂xi

∂f

∂xj
dx, f ∈W 1,2(Rn).

Then E is regular and for f, g ∈W 1,2(Rn),

dΓ(f, g) = 〈σ∇f, σ∇g〉dx.

Example 3.4.8 (Riemannian manifolds). Let (M, g) be a complete n-dimensional Rieman-
nian manifold with Riemannian volume measure µ. We consider the standard Dirichlet
form E on M, which is obtained by closing the bilinear form

E(f, g) =

∫
M
〈∇f,∇g〉dµ, f, g ∈ C∞0 (M).

Then E is regular and for f, g ∈ F ,

dΓ(f, g) = 〈∇f, ∇g〉dx.
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Example 3.4.9 (Carnot groups). Let G be a Carnot group with sub-Laplacian

L =
d∑
i=1

V 2
i

and Dirichlet form

E(f) =

∫
G

∑
i=1

(Vif)2dµ.

Then E is regular and for f, g ∈ F ,

dΓ(f, g) =

d∑
i=1

(Vif)(Vig)dx.

Example 3.4.10. Consider on the infinite Sierpinski gasket the Dirichlet form

E(f) := lim
n→+∞

(
5

3

)n
En(f).

Then E is regular, but unless f is constant, for f ∈ F , dΓ(f) is singular with respect to
the Hausdorff measure µ.

3.5 Energy measure estimates

We now come back in this section to the framework outlined at the beginning of the
chapter, i.e. we assume sub-Gaussian heat kernel estimates.
We first prove that the form E has to be regular. This will follow from a property of the
semigroup Pt which is called the Feller property.

Definition 3.5.1. The heat semigroup (Pt)t≥0 is called a Feller semigroup if:

1. For every t > 0, Pt(C0(X)) ⊂ C0(X);

2. For every f ∈ C0(X),
lim
t→0
‖Ptf − f‖L∞(X,µ) = 0.

Lemma 3.5.2. The semigroup (Pt)t≥0 is a Feller semigroup.

Proof. 1. Let f ∈ C0(X), t > 0 and ε > 0. Since f ∈ C0(X), there exists a compact
set K ⊂ X so that for every y ∈ X \K, |f(y)| ≤ ε. One has then

|Ptf(x)| =
∣∣∣∣∫
X
pt(x, y)f(y)dµ(y)

∣∣∣∣
≤
∫
K
pt(x, y)|f(y)|dµ(y) + ε

≤ c3t
−dH/dW exp

(
−c4

(d(x,K)dW

t

) 1
dW−1

)∫
K
|f(y)|dµ(y) + ε
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Thus, Ptf vanishes at ∞. The fact that Ptf is continuous easily follows from the
joint continuity of the heat kernel and the proof is let to the reader.

2. Let f ∈ C0(X) and ε > 0. Since f ∈ C0(X), it is uniformly continuous. Thus there
exists r > 0 so that d(x, y) ≤ r implies |f(x)− f(y)| ≤ ε.
From Lemma 3.2.3, one has then

|Ptf(x)− f(x)| =
∣∣∣∣∫
X
pt(x, y)f(y)dµ(y)− f(x)

∣∣∣∣
=

∣∣∣∣∫
X
pt(x, y)(f(y)− f(x))dµ(y)

∣∣∣∣
≤
∫
X
pt(x, y)|f(y)− f(x)|dµ(y)

≤
∫
X\B(x,r)

pt(x, y)|f(y)− f(x)|dµ(y) +

∫
B(x,r)

pt(x, y)|f(y)− f(x)|dµ(y)

≤ 2C exp

(
− 1

C

(rdW
t

) 1
dW−1

)
‖f‖L∞(X,µ) + ε.

As an immediate corollary of the Feller property, one deduces regularity.

Theorem 3.5.3. E is regular

Proof. If one defines
C = {Ptf, f ∈ C0(X), t > 0} ,

then it is a subset of C0(X)∩F which is dense in C0(X) in the supremum norm and dense
in C0(X) ∩ F in the E1-norm (

‖f‖2L2(X,µ) + E(f, f)
)1/2

.

It remains to prove that C0(X) ∩ F is dense in F in the E1-norm, which follows from the
fact that the heat kernel estimates imply Pt(L

2(X,µ)) ⊂ C0(X) ∩ F for t > 0 (Exercise
!).

One now turns to a metric estimate of the energy measures.

Theorem 3.5.4. There exist constants c, C > 0 such that for every f ∈ F ∩ L∞(X,µ)
and associated energy measure dΓ(f) we have for every g ∈ F ∩ C0(X), g ≥ 0,

c lim sup
r→0+

1

rdW

∫
X
g(x)

(∫
B(x,r)

|f(y)− f(x)|2
µ(B(x, r))

dµ(y)

)
dµ(x)

≤
∫
X
gdΓ(f)

≤C lim inf
r→0+

1

rdW

∫
X
g(x)

(∫
B(x,r)

|f(y)− f(x)|2
µ(B(x, r))

dµ(y)

)
dµ(x).
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Proof. We first prove the lower bound. For s, t > 0 and α > 0,∫
X

∫
X
|f(x)− f(y)|2pt(x, y)dµ(x)g(y) dµ(y)

≥
∫
X

∫
B(y,s)

|f(x)− f(y)|2pt(x, y)dµ(x)g(y) dµ(y)

≥c1t
−dH/dW

∫
X

∫
B(y,s)

|f(x)− f(y)|2 exp

(
−c2

(d(x, y)dW

t

) 1
dW−1

)
dµ(x)g(y) dµ(y)

≥c1t
−dH/dW exp

(
−c2

(sdW
t

) 1
dW−1

)∫
X

∫
B(y,s)

|f(x)− f(y)|2dµ(x)g(y) dµ(y).

Therefore we have

1

sdH+dW

∫
X

∫
B(y,s)

|f(x)− f(y)|2dµ(x)g(y) dµ(y)

≤C tdH/dW

sdH+dW
exp

(
c2

(sdW
t

) 1
dW−1

)∫
X

∫
X
|f(x)− f(y)|2pt(x, y)dµ(x)g(y) dµ(y)

Choosing t = sdW , one deduces

1

t1+dH/dW

∫
X

∫
B(y,t1/dW )

|f(x)− f(y)|2dµ(x)dµ(y) ≤ C 1

t

∫
X

∫
X
|f(x)− f(y)|2pt(x, y)dµ(x)dµ(y).

By letting t→ 0 we get the lower bound

c lim sup
r→0+

1

rdW

∫
X
g(x)

(∫
B(x,r)

|f(y)− f(x)|2
µ(B(x, r))

dµ(y)

)
dµ(x) ≤

∫
X
gdΓ(f).

The proof of the upper bound follows closely the proof of Lemma 3.3.3, so is omitted for
conciseness.

3.6 Strongly local Dirichlet forms

In this section, we still consider a Dirichlet form E with domain F on a metric measure
space (X, d, µ) whose heat kernel satisfies the sub-Gaussian estimates (3.0.1).

Definition 3.6.1. The Dirichlet form is called strongly local if for any two functions
f, g ∈ F with compact supports such that f is constant in a neighborhood of the support
of g, we have E(f, g) = 0.

Theorem 3.6.2. The Dirichlet form E is strongly local.
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Proof. Let K be the support of g and assume that f is constant on an open set O that
contains K. One has,∫

X

∫
X

(f(x)− f(y))(g(x)− g(y))pt(x, y)dµ(x)dµ(y)

=

∫
X\O

∫
K

(f(x)− f(y))(g(x)− g(y))pt(x, y)dµ(x)dµ(y)

+

∫
K

∫
X\O

(f(x)− f(y))(g(x)− g(y))pt(x, y)dµ(x)dµ(y)

One can estimate∫
K

∫
X\O
|f(x)− f(y)||g(x)− g(y)|pt(x, y)dµ(x)dµ(y)

≤c3t
−dH/dW exp

(
−c4

(d(K,X \ O)dW

t

) 1
dW−1

)∫
K

∫
X\O
|f(x)− f(y)||g(x)− g(y)|dµ(x)dµ(y).

Thus,

E(f, g) = lim
t→0

1

2t

∫
X

∫
X

(f(x)− f(y))(g(x)− g(y))pt(x, y)dµ(x)dµ(y) = 0.

Definition 3.6.3. The energy measures Γ(u, v) inherit a strong locality property from E,
namely that 1UdΓ(u, v) = 0 for any open subset U ⊂ X and u, v ∈ F such that u is a
constant on U . One can then extend Γ to Floc(X) defined as

Floc(X) = {u ∈ L2
loc(X) : ∀ compact K ⊂ X,∃v ∈ F such that u = v|K a.e.}.

We will still denote this extension by Γ. We collect some properties of this extension.

• Strong locality. For all u, v ∈ Floc(X) and all open subset U ⊂ X on which u is a
constant

1UdΓ(u, v) = 0.

• Leibniz and chain rules. For all u ∈ Floc(X), v ∈ Floc(X) ∩ L∞loc(X), w ∈ Floc(X)
and η ∈ C1(R),

dΓ(uv,w) = udΓ(v, w) + vdΓ(u,w),

dΓ(η(u), v) = η′(u)dΓ(u, v).
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Chapter 4

Strictly local Dirichlet spaces

Throughout the chapter, let X be a locally compact and complete metric space equipped
with a Radon measure µ supported on X. Let (E ,F = dom(E)) be a Dirichlet form on
X. We assume throughout that the heat semigroup Pt is stochastically complete and that
the form E is strongly local and regular.

4.1 Intrinsic metric

We denote by Cc(X) the vector space of all continuous functions with compact support
in X and C0(X) its closure with respect to the supremum norm.
With respect to E we can define the following intrinsic metric dE on X by

dE(x, y) = sup{u(x)− u(y) : u ∈ F ∩ C0(X) and dΓ(u, u) ≤ dµ}. (4.1.1)

Here the condition dΓ(u, u) ≤ dµ means that Γ(u, u) is absolutely continuous with respect
to µ with Radon-Nikodym derivative bounded by 1.
The term “intrinsic metric” is potentially misleading because in general there is no reason
why dE is a metric on X (it could be infinite for a given pair of points x, y or zero for some
distinct pair of points).

Definition 4.1.1. A strongly local regular Dirichlet space is called strictly local if dE is a
metric on X and the topology induced by dE coincides with the topology on X.

Example 4.1.2 (Uniformly elliptic divergence form diffusion operators). On Rn, we con-
sider the divergence form operator

Lf = −div(σ∇f),

where σ is a smooth field of positive and symmetric matrices that satisfies

a‖x‖2 ≤ 〈x, σ(y)x〉 ≤ b‖x‖2, x, y ∈ Rn,
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for some constant 0 < a ≤ b. Consider the Dirichlet form

E(f) =

n∑
i,j=1

∫
Rn
σij(x)

∂f

∂xi

∂f

∂xj
dx, f ∈W 1,2(Rn).

Then E is a strictly local Dirichlet form such that

dE(x, y) ' ‖x− y‖.
Example 4.1.3 (Riemannian manifolds). Let (M, g) be a complete n-dimensional Rieman-
nian manifold with Riemannian volume measure µ. We consider the standard Dirichlet
form E on M, which is obtained by closing the bilinear form

E(f, g) =

∫
M
〈∇f,∇g〉dµ, f, g ∈ C∞0 (M).

Then E is a strictly local Dirichlet form such that

dE(x, y) = dg(x, y).

Example 4.1.4 (Carnot groups). Let G be a Carnot group with sub-Laplacian

L =

d∑
i=1

V 2
i

and Dirichlet form

E(f) =

∫
G

∑
i=1

(Vif)2dµ.

Then E is a strictly local Dirichlet form such that

dE(x, y) = dCC(x, y)

where dCC is the so-called Carnot-Carathéodory distance which is defined as follows.
An absolutely continuous curve γ : [0, T ] → G is said to be subunit for the operator L if
for every smooth function f : G→ R we have

∣∣ d
dtf(γ(t))

∣∣ ≤√(Γf)(γ(t)). We then define
the subunit length of γ as `s(γ) = T .
Given x, y ∈ G, we indicate with

S(x, y) = {γ : [0, T ]→ G | γ is subunit for Γ, γ(0) = x, γ(T ) = y}.
It is a consequence of the Chow-Rashevskii theorem that

S(x, y) 6= ∅, for every x, y ∈ G.

One defines then
dCC(x, y) = inf{`s(γ) | γ ∈ S(x, y)}, (4.1.2)

Example 4.1.5. Consider on the infinite Sierpinski gasket the Dirichlet form

E(f) := lim
n→+∞

(
5

3

)n
En(f).

Then E is regular, but unless f is constant, for f ∈ F , dΓ(f) is singular with respect to
the Hausdorff measure µ. As a consequence E is not strictly local.
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4.2 Volume doubling property and Poincaré inequality

Definition 4.2.1. We say that the metric measure space (X, dE , µ) satisfies the volume
doubling property if there exists a constant C > 0 such that for every x ∈ X and r > 0,

µ(B(x, 2r)) ≤ C µ(B(x, r)).

It is easily seen that it follows from the doubling property of µ that there is a constant
0 < Q <∞ and C ≥ 1 such that whenever 0 < r ≤ R and x ∈ X, we have

µ(B(x,R))

µ(B(x, r))
≤ C

(
R

r

)Q
. (4.2.1)

Definition 4.2.2. We say that (X,µ, E ,F) supports the 2-Poincaré inequality if there are
constants C > 0 and λ ≥ 1 such that whenever B is a ball in X (with respect to the metric
dE) and u ∈ F , we have∫

B
|u− uB|2 dµ ≤ C rad (B)2

∫
λB
dΓ(u, u).

A theorem due to Grigorian, Saloff-Coste and Sturm is the following:

Theorem 4.2.3. Let (X, d = dE , E , µ,F) be a strictly local Dirichlet space. The following
are equivalent:

1. (X,µ, E ,F) supports the 2-Poincaré inequality and (X, dE , µ) satisfies the volume
doubling property;

2. The heat semigroup Pt admits a jointly continuous heat kernel function pt(x, y) on
[0,∞)×X ×X for which there are constants c1, c2, C > 0 such that whenever t > 0
and x, y ∈ X,

1

C

e−c1d(x,y)2/t

µ(B(x,
√
t))
≤ pt(x, y) ≤ C e−c2d(x,y)2/t

µ(B(x,
√
t))
. (4.2.2)

The proof is divided into several lemmas.

Lemma 4.2.4. Assume (4.2.2). Then (X, dE , µ) satisfies the volume doubling property.

Proof. ∫
X
pt(x, y)dµ(y)

≥
∫
B(x,R)

pt(x, y)dµ(y)

≥
∫
B(x,R)

1

C

e−c1d(x,y)2/t

µ(B(x,
√
t))
dµ(y)

≥ 1

C

e−c1R
2/t

µ(B(x,
√
t))
µ(B(x,R)).
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Since
∫
X pt(x, y)dµ(y) = 1, one deduces

µ(B(x,R)) ≤ Cec1R2/tµ(B(x,
√
t)).

Choosing t = R2/4 yields the expected result.

Lemma 4.2.5. Assume (4.2.2). Then (X,µ, E ,F) supports the 2-Poincaré inequality.

Proof. The proof uses the Neumann heat kernel and we skip some of the details. Let
x0 ∈ X and r > 0. We denote Ω = B(x0, r). Let DΩ be the set of functions f ∈ Floc such
that for every g ∈ Floc, ∫

Ω
gLfdµ = −

∫
Ω
dΓ(f, g).

It is easy to see that L is essentially self-adjoint on DΩ. Its Friedrichs extension, still
denoted L, is called the Neumann Laplacian on Ω and the semigroup it generates, the
Neumann semigroup. Denote this semigroup by PNt . By using the global lower bound

p(x, y, t) ≥ C

µ(B(x,
√
t))

exp

(
−Cd(x, y)2

t

)
,

for the heat kernel, it is possible to prove a lower bound for the Neumann heat kernel on
the ball B(x0, r): For x, y ∈ B(x0.r/2),

pN (x, y, r2) ≥ C

µ(B(x0, r/2))
.

We have for f ∈ DΩ

PNr2/2(f2)− (PNr2/2f)2 =

∫ r2/2

0

d

dt
PNt ((PNr2/2−tf)2)dt.

By integrating over Ω, we find then,∫
Ω
PNr2/2(f2)− (PNr2/2f)2dµ = −

∫ r2/2

0

∫
Ω

d

dt
(PNt f)2dµdt

= 2

∫ r2/2

0

∫
Ω
dΓ(PNt f, P

N
t f)dt

≤ r2

∫
Ω
dΓ(f).

But on the other hand, we have∫
Ω
PNr2/2(f2)− (PNr2/2f)2dµ =

1

2

∫
Ω

∫
Ω
pNr2(x, y)(f(x)− f(y))2dµ(x) dµ(y)

≥ 1

2

∫
Ω/2

∫
Ω/2

pNr2(x, y)(f(x)− f(y))2dµ(x) dµ(y)

≥ C

µ(Ω/2)

∫
Ω/2

∫
Ω/2

(f(x)− f(y))2dµ(x) dµ(y)
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which gives∫
Ω
PNr2/2(f2)− (PNr2/f)2dµ ≥ C

∫
Ω/2

(
f(x)− 1

µ(Ω/2)

∫
Ω/2

fdµ

)2

dµ(x)

The proof is complete.
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