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Preface

This book originates from a set of lecture notes for graduate classes I delivered
since 2005, first at the Paul Sabatier University in Toulouse, and then at Pur-
due University in West Lafayette. The lecture notes benefited much from the
input and criticism from several students and have been modified and expanded
numerous times before reaching the final form of this book.

My motivation is to present at the graduate level and in a concise but
complete way the most important tools and ideas of the classical theory of
continuous time processes and at the same time introduce the readers to more
advanced theories : the theory of Dirichlet forms, the Malliavin calculus and
the Lyons rough paths theory.

Several exercises of various levels are distributed throughout the text in
order to test the understanding of the reader. Results proved in these exercises
are sometimes used in later parts of the text so I really encourage the reader
to have a dynamic approach in his reading and to try to solve the exercises.

I included at the end of each chapter a short section listing references for
the reader wishing to complement his reading or looking for more advanced
theories and topics.

Chapters 1,2,5 and 6 are essentially independent from Chapters 3 and 4.
I often used the materials in Chapters 1,2,5 and 6 as a graduate course on
Stochastic calculus and Chapters 3 and 4 on their own as a course on Markov
processes and Markov semigroups assuming some of the basic results of Chapter
1. Chapter 7 is almost entirely independent from the other chapters. It is an
introduction to Lyons rough paths theory which offers a deterministic approach
to understand differential equations driven by very irregular processes including
as a special case Brownian motion.

To conclude, I would like to express my gratitude to the students who
pointed out typos and inaccuracies in various versions of the lecture notes
leading to this book and to my colleague Cheng Ouyang for a detailed reading
of an early draft of the manuscript. Of course, all the remaining typos and
mistakes are my own responsibility and a list of corrections will be kept online
on my personal blog. Finally, I thank Igor Kortchmeski for letting me use his
nice picture of a random stable tree on the cover of the book.

West Lafayette, January 2014 Fabrice Baudoin
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Introduction

The first stochastic process that has been extensively studied is the Brownian
motion, named in honor of the botanist Robert Brown, who observed and de-
scribed in 1828 the random movement of particles suspended in a liquid or gas.
One of the first mathematical studies of this process goes back to the mathe-
matician Louis Bachelier, in 1900, who, in his thesis [?], presented a stochastic
modelling of the stock and option markets. But, mainly due to the lack of
rigorous foundations of probability theory at that time, the seminal work of
Bachelier has been ignored for a long time by mathematicians. However, in his
1905 paper, Albert Einstein brought this stochastic process to the attention
of physicists by presenting it as a way to indirectly confirm the existence of
atoms and molecules. The rigorous mathematical study of stochastic processes
really began with the mathematician Andrei Kolmogorov. His monograph [?]
published in Russian in 1933 built up probability theory in a rigorous way from
fundamental axioms in a way comparable to Euclid’s treatment of geometry.
From this axiomatic, Kolmogorov gives a precise definition of stochastic pro-
cesses. His point of view stresses the fact that a stochastic process is nothing
else but a random variable valued in a space of functions (or a space of curves).
For instance, if an economist reads a financial newspaper because he is inter-
ested in the prices of barrel of oil for last year, then he will focus on the curve
of these prices. According to Kolmogorov’s point of view, saying that these
prices form a stochastic process is then equivalent to saying that the curve that
is seen is the realization of a random variable defined on a suitable probability
space. This point of view is mathematically quite deep and provides existence
results for stochastic processes as well as pathwise regularity results.

Joseph Doob writes in his introduction to his famous book ”Stochastic
processes” [?]:

A stochastic process is any process running along in time and controlled by
probability laws...more precisely any family of random variables where a random
variable ... is simply a measurable function...

Doob’s point of view, which is consistent with Kolmogorov’s and built on the
work by Paul Lévy, is nowadays commonly given as a definition of a stochastic
process. Relying on this point of view that emphasizes the role of time, Doob’s
work, developed during the 1940’s and the 1950’s has quickly become one of
the most powerful tools available to study stochastic processes.

Let us now describe the seminal considerations of Bachelier. Let Xt denote
the price at time t of a given asset on a financial market (Bachelier considered
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a given quantity of wheat). We will assume that X0 = 0 (otherwise, we work
with Xt −X0). The first observation is that the price Xt can not be predicted
with absolute certainty. It seems therefore reasonable to assume that Xt is a
random variable defined on some probability space. One of the initial problems
of Bachelier was to understand the distribution of prices at given times, that is
the distribution of the random variable (Xt1 , ..., Xtn), where t1, ..., tn are fixed.

The two following fundamental observations of Bachelier were based on
empirical observations:

• If τ is very small then, in absolute value, the price variation Xt+τ −Xt

is of order σ
√
τ , where σ is a positive parameter (nowadays called the

volatility of the asset);

• The expectation of a speculator is always zero1 (nowadays, a generaliza-
tion of this principle is called the absence of arbitrage).

Next, Bachelier assumes that for every t > 0, Xt has a density with respect
to the Lebesgue measure, let us say p(t, x). It means that if [x− ε, x+ ε] is a
small interval around x, then

P(Xt ∈ [x− ε, x+ ε]) ' 2εp(t, x).

The two above observations imply that for τ small,

p(t+ τ, x) ' 1

2
p(t, x− σ

√
τ) +

1

2
p(t, x+ σ

√
τ).

Indeed, due to the first observation, if the price is x at time t + τ , it means
that at time t the price was equal to x−σ

√
τ or to x+σ

√
τ . According to the

second observation, each of this case occurs with probability 1
2 .

Now Bachelier assumes that p(t, x) is regular enough and uses the following
approximations coming from a Taylor expansion:

p(t+ τ, x) ' p(t, x) + τ
∂p

∂t
(t, x)

p(t, x− σ
√
τ) ' p(t, x)− σ

√
τ
∂p

∂x
(t, x) +

1

2
σ2τ

∂2p

∂x2
(t, x)

p(t, x+ σ
√
τ) ' p(t, x) + σ

√
τ
∂p

∂x
(t, x) +

1

2
σ2τ

∂2p

∂x2
(t, x).

This yields the equation

∂p

∂t
=

1

2
σ2 ∂

2p

∂x2
(t, x). (0.1)

1Quoted and translated from French: It seems that the market, the aggregate of specu-
lators, can believe in neither a market rise nor a market fall, since, for each quoted price,
there are as many buyers as sellers..
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This is the so-called heat equation, which is the primary example of a diffusion
equation. Explicit solutions to this equation are obtained using the Fourier
transform, and by using the fact that at time 0, p is the Dirac distribution at
0, it is computed that:

p(t, x) =
e−

x2

2σ2t

σ
√

2πt
.

It means that Xt has a Gaussian distribution with mean 0 and variance σ2.
Let now 0 < t1 < ... < tn be fixed times and I1, ..., In be fixed intervals. In
order to compute P(Xt1 ∈ I1, ..., Xtn ∈ In) the next step is to assume that the
above analysis did not depend on the origin of time, or more precisely that the
best information available at time t is given by the price Xt. That leads first
to the following computation

P(Xt1 ∈ I1, Xt2 ∈ I2) =

∫
I1

P(Xt2 ∈ I2 | Xt1 = x1)p(t1, x1)dx1

=

∫
I1

P(Xt2−t1 + x1 ∈ I2 | Xt1 = x1)p(t1, x1)dx1

=

∫
I1×I2

p(t2 − t1, x2 − x1)p(t1, x1)dx1dx2,

which is easily generalized to

P(Xt1 ∈ I1, ..., Xtn ∈ In) (0.2)

=

∫
I1×···×In

p(tn − tn−1, xn − xn−1) · · · p(t2 − t1, x2 − x1)p(t1, x1)dx1dx2 · · · dxn.

In many regards, the previous computations were not rigorous but heuristic.
One of our first motivations is to provide a rigorous construction of this object
Xt on which worked Bachelier and that is called a Brownian motion.

From a rigorous point of view the question is: Does there exist a sequence
of random variables {Xt, t ≥ 0} such that t→ Xt is continuous and such that
the property (0.2) is satisfied ? Chapter 1 will give a positive answer to this
question. We will see how to define and construct processes. In particular
we will prove the existence of Brownian motion and then study several of its
properties.

Chapter 1 sets the foundations. It deals with the basic definitions and
results that are required to rigorously deal with stochastic processes. We intro-
duce the relevant σ-fields and prove the fundamental Daniell-Kolmogorov the-
orem which may be seen as an infinite dimensional version of the Carathéodory
extension of measure theorem. It is the basic theorem to prove the existence
of a stochastic process. However, despite its importance and usefulness, the
Daniell-Kolmogorov result relies on the axiom of choice and as such is non-
constructive and does not give any information or insight about the stochastic
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process that has been proved to exist. The Kolmogorov continuity theorem
fills one of those gaps and gives a useful criterion to ensure that we can work
with a process whose sample paths are continuous. Chapter 1 also includes a
thorough study of continuous martingales. We focus on Doob’s theorems: The
stopping theorem, the regularization result and the maximal inequalities. Mar-
tingale techniques are essential to study stochastic processes. They give the
tools to handle stopping times which are naturally associated to processes and
provide the inequalities which are the cornerstones of the theory of stochastic
integration which is presented in Chapter 5.

Chapter 2 is devoted to the study of the most important stochastic process:
The Brownian motion. As a consequence of the Daniell-Kolmogorov and Kol-
mogorov continuity theorems, we prove the existence of this process and then
study some of its most fundamental properties. From many point of views,
Brownian motion can be seen as the continuous random walk in continuous
time. This is made precise at the end of the chapter where we give an al-
ternative proof of the existence of the Brownian motion as a limit of suitably
rescaled random walks.

Chapter 3 is devoted to the study of Markov processes. Our goal is to em-
phasize the role of the theory of semigroups when studying Markov processes.
More precisely, we wish to understand how one can construct a Markov process
from a semigroup and then see what are the properties inherited from the semi-
group to the sample paths properties of the process. We will particularly focus
on the class of Feller-Dynkin Markov processes which are a class of Markov
processes enjoying several nice properties, like the existence of regular versions
and the strong Markov property. We finish the chapter with a study of the
Lévy processes which form an important subset of the class of Feller-Dynkin
Markov processes.

Chapter 4 can be thought an introduction to the theory of symmetric Dirich-
let forms. As we will see, this theory and the set of tools attached of it belong
much more to functional analysis than probability theory. The basic problem
is the construction of a Markov semigroup and of a Markov process only from
the generator. More precisely, the question is: Given a diffusion operator L,
does L generate Markov semigroup Pt and if yes, is this semigroup the tran-
sition semigroup of a continuous Markov process ? We will answer positively
this question in quite a general framework under the basic assumption that L
is elliptic and essentially self-adjoint with respect to some Borel measure.

Chapter 5 is about stochastic calculus and its applications to the study of
Brownian motion. Stochastic calculus is an integral and differential calculus
with respect to Brownian motion or more generally with respect to martingales.
It allows to give a meaningful sense to integrals with respect to Brownian
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motion paths and to define differential equations driven by such paths. It is
not a straightforward extension of the usual calculus because Brownian motion
paths are not regular enough, they are only γ-Hölder continuous with γ < 1/2.
The range of applications of the stochastic calculus is huge and still growing
today. We mention in particular that the applications to mathematical finance
have drawn a lot of attention on this calculus. Actually, most of the modern
pricing theories for derivatives on financial markets are based on Itô-Döblin’s
formula which is the chain rule for stochastic calculus.

Chapter 6 deals with the theory of stochastic differential equations. Stochas-
tic differential equations are the differential equations that correspond to Itô’s
integration theory. They give a very powerful tool to construct a Markov
process from its generator. We will prove the basic existence and uniqueness
results for such equations and quickly turn to the basic properties of the so-
lution. One of the problems we are the most interested in is the existence of
a smooth density for the solution of a stochastic differential equation. This
problem gave birth to the so-called Malliavin calculus which is the study of the
Sobolev regularity of Brownian functionals and that we study in some details.

Chapter 7 is an introduction to the theory of rough paths that was developed
by Lyons in the 1990’s. The theory is deterministic. It allows to give a sense
to solutions of differential equations driven by very irregular paths. Stochastic
differential equations driven by Brownian motions are then seen as a very spe-
cial case of rough differential equations. The advantage of the theory is that
it goes much beyond the scope of Itô calculus when dealing with differential
systems driven by random noises and comes with powerful estimates.



Chapter 1

Stochastic processes

In this chapter we set the rigorous foundations on which the theory of general
stochastic processes is built. Our first task will be to to build a measure theory
in infnite dimension and then to study sample paths properties of stochastic
processes. The second part of the chapter is devoted to the study of martin-
gales. Martingales techniques will be used in amost every parts of this book.

1 Measure theory in function spaces

Stochastic processes can be seen as random variables taking their values in a
function space. It is therefore important to understand the naturallly associ-
ated σ-algebras.

Let A(R≥0,Rd), d ≥ 1, be the set of functions R≥0 → Rd. We denote by
T (R≥0,Rd) the σ-algebra generated by the so-called cylindrical sets

{f ∈ A(R≥0,Rd), f(t1) ∈ I1, ..., f(tn) ∈ In}

where
t1, ..., tn ∈ R≥0

and where I1, ..., In are products of intervals: Ii = Πd
k=1(aki , b

k
i ].

Remark 1.1. As a σ-algebra T (R≥0,Rd) is also generated by the following
families:

•
{f ∈ A(R≥0,Rd), f(t1) ∈ B1, ..., f(tn) ∈ Bn}

where t1, ..., tn ∈ R≥0 and where B1, ..., Bn are Borel sets in Rd.

•
{f ∈ A(R≥0,Rd), (f(t1), ..., f(tn)) ∈ B}

where t1, ..., tn ∈ R≥0 and where B is a Borel set in (Rd)⊗n.

Exercise 1.2. Show that the following sets are not in T ([0, 1],R):

1.
{f ∈ A([0, 1],R), sup

t∈[0,1]

f(t) < 1}

2.
{f ∈ A([0, 1],R),∃t ∈ [0, 1]f(t) = 0}
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The above exercise shows that the σ-algebra T (R≥0,Rd) is not rich enough
to include natural events; this is due to the fact that the space A(R≥0,Rd) is
by far too big.

In this book, we shall mainly be interested in processes with continuous
paths. In that case, we use the space of continuous functions C(R≥0,Rd) en-
dowed with the σ-algebra B(R≥0,Rd) generated by

{f ∈ C(R≥0,Rd), f(t1) ∈ I1, ..., f(tn) ∈ In}

where t1, ..., tn ∈ R≥0 and where I1, ..., In are products of intervals Πd
k=1(aki , b

k
i ].

This σ-algebra enjoys nice properties. It is generated by the open sets of the
(metric) topology of uniform convergence on compact sets.

Proposition 1.3. The σ-algebra B(R≥0,Rd) is generated by the open sets of
the topology of uniform convergence on compact sets.

Proof. We make the proof when the dimension d = 1 and let the reader adapt
it in higher dimension. Let us first recall that, on C(R≥0,R) the topology of
uniform convergence on compact sets is given by the distance

d(f, g) =

+∞∑
n=1

1

2n
min( sup

0≤t≤n
| f(t)− g(t) |, 1).

This distance endows C(R≥0,R) with the structure of a complete, separable,
metric space. Let us denote by O the σ-field generated by the open sets of this
metric space. First, it is clear that the cylinders

{f ∈ C(R≥0,R), f(t1) < a1, ..., f(tn) < an}

are open sets that generate B(R≥0,R). Thus, we have B(R≥0,R) ⊂ O. On the
other hand, since for every g ∈ C(R≥0,R), n ∈ N, n ≥ 1 and ρ > 0

{f ∈ C(R≥0,R), sup
0≤t≤n

| f(t)− g(t) |≤ ρ}

= ∩t∈Q,0≤t≤n {f ∈ C(R≥0,R), | f(t)− g(t) |≤ ρ},

we deduce that

{f ∈ C(R≥0,R), sup
0≤t≤n

| f(t)− g(t) |≤ ρ} ∈ B(R≥0,R).

Since O is generated by the above sets, this implies O ⊂ B(R≥0,R). 2

Exercise 1.4. Show that the following sets are in B([0, 1],R):

1.
{f ∈ C([0, 1],R), sup

t∈[0,1]

f(t) < 1}.

2.
{f ∈ C([0, 1],R),∃t ∈ [0, 1]f(t) = 0}.
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2 Stochastic processes

Let (Ω,F ,P) be a probability space.

Definition 1.5. On (Ω,F ,P), a (d-dimensional) stochastic process is a se-
quence (Xt)t≥0 of Rd-valued random variables that are measurable with respect
to F .

A process (Xt)t≥0 can also be seen as an application

X(ω) ∈ A(R≥0,Rd), t→ Xt(ω).

The applications t → Xt(ω) are called the paths of the process. The applica-
tion X : (Ω,F) → (A(R≥0,Rd), T (R≥0,Rd)) is measurable. The probability
measure defined by

µ(A) = P(X−1(A)), A ∈ T (R≥0,Rd)

is then called the law (or distribution) of (Xt)t≥0.

For t ≥ 0, we denote by πt the application that transforms f ∈ A(R≥0,Rd)
into f(t): πt : f → f(t). The stochastic process (πt)t∈ R≥0

which is thus defined

on the probability space (A(R≥0,R), T (R≥0,Rd), µ) is called the canonical pro-
cess associated to X. It is a process with distribution µ.

Definition 1.6. A process (Xt)t≥0 is said to be measurable if the application

(t, ω)→ Xt(ω)

is measurable with respect to the σ-algebra B(R≥0)⊗F that is, if

∀A ∈ B(Rd), {(t, ω), Xt(ω) ∈ A} ∈ B(R≥0)⊗F .

The paths of a measurable process are, of course, measurable functions
R≥0 → Rd.

Definition 1.7. If a process X takes its values in C(R≥0,Rd), that is if the
paths of X are continuous functions, then we say that X is a continuous process.

If (Xt)t≥0 is a continuous process then the application

X : (Ω,F)→ (C(R≥0,Rd),B(R≥0,R))

is measurable and the distribution of X is a probability measure on the space
(C(R≥0,Rd),B(R≥0,Rd)). Moreover, a continuous process is measurable in the
sense of the Definition 1.6:
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Proposition 1.8. A continuous stochastic process is measurable.

Proof. Let (Xt)t≥0 be a continuous process. Let us first prove that if A is a
Borel set in R, then

{(t, ω) ∈ [0, 1]× Ω, Xt(ω) ∈ A} ∈ B(R≥0)⊗F .

For n ∈ N, let
Xn
t = X [2nt]

2n
, t ∈ [0, 1],

where [x] denotes the integer part of x. Since the paths of Xn are piecewise
constant, we have

{(t, ω) ∈ [0, 1]× Ω, Xn
t (ω) ∈ A} ∈ B(R≥0)⊗F .

Moreover, ∀t ∈ [0, 1], ω ∈ Ω, we have

lim
n→+∞

Xn
t (ω) = Xt(ω),

which implies

{(t, ω) ∈ [0, 1]× Ω, Xt(ω) ∈ A} ∈ B(R≥0)⊗F .

In the same way we obtain that ∀k ∈ N,

{(t, ω) ∈ [k, k + 1]× Ω, Xt(ω) ∈ A} ∈ B(R≥0)⊗F .

Observing

{(t, ω) ∈ R× Ω, Xt(ω) ∈ A} = ∪k∈N{(t, ω) ∈ [k, k + 1]× Ω, Xt(ω) ∈ A},

yields the sought of conclusion. 2

3 Filtrations

A stochastic process (Xt)t≥0 may also be seen as a random system evolving
in time. This system carries some information. More precisely, if one observes
the paths of a stochastic process up to a time t > 0, one is able to decide if an
event

A ∈ σ(Xs, s ≤ t)

has occured (here and in the sequel σ(Xs, s ≤ t) denotes the smallest σ-field
that makes all the random variables {(Xt1 , · · · , Xtn), 0 ≤ t1 ≤ · · · ≤ tn ≤ t}
measurable). This notion of information carried by a stochastic process is
modeled by filtrations.

Definition 1.9. Let (Ω,F ,P) be a probability space. A filtration (Ft)t≥0 is a
non-decreasing family of sub-σ-algebras of F .
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As a basic example, if (Xt)t≥0 is a stochastic process defined on (Ω,F ,P),then

Ft = σ(Xs, s ≤ t)

is a filtration. This filtration is called the natural filtration of the process X
and often denoted by (FXt )t≥0.

Definition 1.10. A stochastic process (Xt)t≥0 is said to be adapted to a
filtration (Ft)t≥0 if for every t ≥ 0, the random variable Xt is measurable with
respect to Ft.

Of course, a stochastic process is always adapted with respect to its natural
filtration. We may observe that if a stochastic process (Xt)t≥0 is adapted to a
filtration (Ft)t≥0 and that if F0 contains all the subsets of F that have a zero

probability, then every process (X̃t)t≥0 that satisfies

P(X̃t = Xt) = 1, t ≥ 0,

is still adapted to the filtration (Ft)t≥0.
We previously defined the notion of measurability for a stochastic process.

In order to take into account the dynamic aspect associated to a filtration, the
notion of progressive measurability is needed.

Definition 1.11. A stochastic process (Xt)t≥0 that is adapted to a filtration
(Ft)t≥0, is said to be progressively measurable with respect to the filtration
(Ft)t≥0 if for every t ≥ 0,

∀A ∈ B(R), {(s, ω) ∈ [0, t]× Ω, Xs(ω) ∈ A} ∈ B([0, t])⊗Ft.

By using the diagonal method, it is possible to construct adapted but not
progressively measurable processes. However, the next proposition whose proof
is let as an exercise to the reader shows that an adapted and continuous stochas-
tic process is automatically progressively measurable.

Proposition 1.12. A continuous stochastic process (Xt)t≥0, that is adapted
with respect to a filtration (Ft)t≥0, is also progressively measurable with respect
to it.

4 The Daniell-Kolmogorov extension theorem

The Daniell-Kolmogorov extension theorem is one of the first deep theorems
of the theory of stochastic processes. It provides existence results for nice
probability measures on path (function) spaces. It is however non-constructive
and relies on the axiom of choice. In what follows, in order to avoid heavy
notations we restrict the presentation to the one dimensional case d = 1. The
multidimensional extension is straightforward.
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Definition 1.13. Let (Xt)t≥0 be a stochastic process. For t1, ..., tn ∈ R≥0 we
denote by µt1,...,tn the probability distribution of the random variable

(Xt1 , ..., Xtn).

It is therefore a probability measure on Rn. This probability measure is called
a finite dimensional distribution of the process (Xt)t≥0.

If two processes have the same finite dimensional distributions, then it is
clear that the two processes induce the same distribution on the path space
A(R≥0,R) because cylinders generate the σ-algebra T (R≥0,R).

The finite dimensional distributions of a given process satisfy the two follow-
ing properties: If t1, ..., tn ∈ R≥0 and if τ is a permutation of the set {1, ..., n},
then:

1.

µt1,...,tn(A1 × ...×An) = µtτ(1),...,tτ(n)
(Aτ(1) × ...×Aτ(n)), Ai ∈ B(R).

2.

µt1,...,tn(A1× ...×An−1×R) = µt1,...,tn−1
(A1× ...×An−1), Ai ∈ B(R).

Conversely, we have

Theorem 1.14 (Daniell-Kolmogorov theorem). Assume that we are given for
every t1, ..., tn ∈ R≥0 a probability measure µt1,...,tn on Rn. Let us assume that
these probability measures satisfy:

1.

µt1,...,tn(A1 × ...×An) = µtτ(1),...,tτ(n)
(Aτ(1) × ...×Aτ(n)), Ai ∈ B(R).

2.

µt1,...,tn(A1× ...×An−1×R) = µt1,...,tn−1(A1× ...×An−1), Ai ∈ B(R).

Then, there is a unique probability measure µ on (A(R+,R), T (R+,R)) such
that for t1, ..., tn ∈ R≥0, A1, ..., An ∈ B(R):

µ(πt1 ∈ A1, ..., πtn ∈ An) = µt1,...,tn(A1 × ...×An).

The Daniell-Kolmogorov theorem is often used to construct processes thanks
to the following corollary:

Corollary 1.15. Assume given for every t1, ..., tn ∈ R≥0 a probability measure
µt1,...,tn on Rn. Let us further assume that these measures satisfy the assump-
tions of the Daniell-Kolmogorov theorem. Then, there exists a probability space
(Ω,F ,P) as well as a process (Xt)t≥0 defined on this space such that the finite
dimensional distributions of (Xt)t≥0 are given by the µt1,...,tn ’s.
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Proof. As a probability space we chose

(Ω,F ,P) = (A(R≥0,R), T (R≥0,R), µ)

where µ is the probability measure given by the Daniell-Kolmogorov theorem.
The canonical process (πt)t≥0 defined on A(R≥0,R) by πt(f) = f(t) satisfies
the required property. 2

We now turn to the proof of the Daniell-Kolmogorov theorem. This proof
proceeds in several steps.

As a first step, let us recall the Carathéodory extension theorem that is often
useful for the effective construction of measures (for instance the construction
of the Lebesgue measure on R):

Theorem 1.16 (Carathéodory theorem). Let Ω be a non-empty set and let A
be a family of subsets that satisfy:

1. Ω ∈ A;

2. If A,B ∈ A, A ∪B ∈ A;

3. If A ∈ A, Ω\A ∈ A.

Let σ(A) be the σ-algebra generated by A. If µ0 is σ-additive measure on
(Ω,A), then there exists a unique σ-additive measure µ on (Ω, σ(A)) such that
for A ∈ A,

µ0(A) = µ(A).

As a second step, we prove the following fact:

Lemma 1.17. Let Bn ⊂ Rn, n ∈ N be a sequence of Borel sets that satisfy

Bn+1 ⊂ Bn × R.

Let us assume that for every n ∈ N a probability measure µn is given on
(Rn,B(Rn)) and that these probability measures are compatible in the sense
that

µn(A1 × ...×An−1 × R) = µn−1(A1 × ...×An−1), Ai ∈ B(R).

and satisfy:
µn(Bn) > ε,

where 0 < ε < 1. There exists a sequence of compact sets Kn ⊂ Rn, n ∈ N,
such that:

• Kn ⊂ Bn
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• Kn+1 ⊂ Kn × R.

• µn(Kn) ≥ ε
2 .

Proof. For every n, we can find a compact set K∗n ⊂ Rn such that

K∗n ⊂ Bn

and
µn(Bn\K∗n) ≤ ε

2n+1
.

Let us consider

Kn = (K∗1 × Rn−1) ∩ ... ∩ (K∗n−1 × R) ∩K∗n.

It is easily checked that:

• Kn ⊂ Bn

• Kn+1 ⊂ Kn × R.

Moreover, we have

µn(Kn)

=µn(Bn)− µn(Bn\Kn)

=µn(Bn)− µn
(
Bn\

(
(K∗1 × Rn−1) ∩ ... ∩ (K∗n−1 × R) ∩K∗n

))
≥µn(Bn)− µn

(
Bn\

(
(K∗1 × Rn−1)

))
− ...− µn

(
Bn\

(
K∗n−1 × R

))
− µn(Bn\K∗n)

≥µn(Bn)− µ1(B1\K∗1 )− ...− µn(Bn\K∗n)

≥ε− ε

4
− ...− ε

2n+1

≥ε
2
.

2

With this in hands, we can now turn to the proof of the Daniell-Kolmogorov
theorem.

Proof. For the cylinder

Ct1,...,tn(B) = {f ∈ A(R+,R), (f(t1), ..., f(tn)) ∈ B}

where
t1, ..., tn ∈ R≥0

and where B is a Borel subset of Rn, we define

µ (Ct1,...,tn(B)) = µt1,...,tn(B).
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Thanks to the assumptions on the µt1,...,tn ’s, it is seen that such a µ is well
defined and satisfies:

µ (A(R≥0,R)) = 1.

The set A of all the possible cylinders Ct1,...,tn(B) satisfies the assumption of
Carathéodory theorem. Therefore, in order to conclude, we have to show that
µ is σ-additive, that is, if (Cn)n∈N is a sequence of pairwise disjoint cylinders
and if C = ∪n∈NCn is a cylinder then

µ (C) =

+∞∑
n=0

µ(Cn).

This is the difficult part of the theorem. Since for N ∈ N,

µ(C) = µ
(
C\ ∪Nn=0 Cn

)
+ µ

(
∪Nn=0Cn

)
,

we just have to show that

lim
N→+∞

µ (DN ) = 0.

where DN = C\ ∪Nn=0 Cn.
The sequence (µ(DN ))N∈N is positive decreasing and therefore converges.

Let assume that it converges toward ε > 0. We shall prove that in that case

∩N∈NDN 6= ∅,

which is clearly absurd.
Since DN is a cylinder, the event ∪N∈NDN only involves a coutable sequence

of times t1 < ... < tn < ... and we may assume (otherwise we can add convenient
other sets in the sequence of the DN ’s) that every DN can be described as
follows

DN = {f ∈ A(R≥0,R), (f(t1), ..., f(tN )) ∈ BN}

where Bn ⊂ Rn, n ∈ N, is a sequence of Borel sets such that

Bn+1 ⊂ Bn × R.

Since we assumed µ(DN ) ≥ ε, we can use the previous lemma to construct a
sequence of compact sets Kn ⊂ Rn, n ∈ N, such that:

• Kn ⊂ Bn

• Kn+1 ⊂ Kn × R.

• µt1,...,tn(Kn) ≥ ε
2 .
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Since Kn is non-empty, we pick

(xn1 , ..., x
n
n) ∈ Kn.

The sequence (xn1 )n∈N has a convergent subsequence (x
j1(n)
1 )n∈N that converges

toward x1 ∈ K1. The sequence ((x
j1(n)
1 , x

j1(n)
2 )n∈N has a convergent subse-

quence that converges toward (x1, x2) ∈ K2. By pursuing this process1 we
obtain a sequence (xn)n∈N such that for every n,

(x1, ..., xn) ∈ Kn.

The event
{f ∈ A(R+,R), (f(t1), ..., f(tN )) = (x1, ..., xN )}

is in DN , this leads to the expected contradiction. Therefore, the sequence
(µ(DN ))N∈N converges toward 0, which implies the σ-additivity of µ. 2

The Daniell-Kolmogorov theorem is the basic tool to prove the existence of a
stochastic process with given finite dimensional distributions. As an example,
let us illustrate how it may be used to prove the existence of the so-called
Gaussian processes.

Definition 1.18. A real-valued stochastic process (Xt)t≥0 defined on (Ω,F ,P)
is said to be a Gaussian process if all the finite dimensional distributions of X
are Gaussian random variables.

If (Xt)t≥0 is a Gaussian process, its finite dimensional distributions can be
characterized, through Fourier transform, by its mean function

m(t) = E(Xt)

and its covariance function

R(s, t) = E ((Xt −m(t))(Xs −m(s))) .

We can observe that the covariance function R(s, t) is symmetric (R(s, t) =
R(t, s)) and positive, that is for a1, ..., an ∈ R and t1, ..., tn ∈ R≥0,∑

1≤i,j≤n

aiajR(ti, tj) =
∑

1≤i,j≤n

aiajE
(
(Xti −m(ti))(Xtj −m(tj))

)

= E

( n∑
i=1

(Xti −m(ti))

)2


≥ 0.

Conversely, as an application of the Daniell-Kolmogorov theorem, we let the
reader prove as an exercise the following proposition.

1This is here that the axiom of choice is needed.
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Proposition 1.19. Let m : R≥0 → R and let R : R≥0 × R≥0 → R be a
symmetric and positive function. There exists a probability space (Ω,F ,P) and
a Gaussian process (Xt)t≥0 defined on it, whose mean function is m and whose
covariance function is R.

Exercise 1.20. Let (Xt)0≤t≤T be a continuous Gaussian process. Show that

the random variable
∫ T

0
Xsds is a Gaussian random variable.

5 The Kolmogorov continuity theorem

The Daniell-Kolmogorov theorem is a very useful tool since it provides existence
results for stochastic processes. However this theorem does not say anything
about the paths of this process. The following theorem, due to Kolmogorov,
precises that, under mild conditions, we can work with processes whose paths
are quite regular.

Definition 1.21. A function f : R≥0 → Rd is said to be Hölder with exponent
α > 0 if there exists a constant C > 0 such that for s, t ∈ R≥0,

‖f(t)− f(s)‖ ≤ C | t− s |α .

Hölder functions are in particular continuous.

Definition 1.22. A stochastic process (X̃t)t≥0 is called a modification of the
process (Xt)t≥0 if for t ≥ 0,

P
(
Xt = X̃t

)
= 1.

Remark 1.23. We can observe that if (X̃t)t≥0 is a modification of (Xt)t≥0

then (X̃t)t≥0 has the same distribution as (Xt)t≥0.

Theorem 1.24 (Kolmogorov continuity theorem). Let α, ε, c > 0. If a d-
dimensional process (Xt)t∈[0,1] defined on a probability space (Ω,F ,P) satisfies
for s, t ∈ [0, 1],

E (‖Xt −Xs‖α) ≤ c | t− s |1+ε,

then there exists a modification of the process (Xt)t∈[0,1] that is a continuous
process and whose paths are γ-Hölder for every γ ∈ [0, εα ).

Proof. We make the proof for d = 1 and let the reader extend it as an exercise
to the case d ≥ 2. For n ∈ N, we denote

Dn =

{
k

2n
, k = 0, ..., 2n

}
and

D = ∪n∈NDn.
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Let γ ∈ [0, εα ). From Chebychev inequality:

P
(

max
1≤k≤2n

|X k
2n
−X k−1

2n
| ≥ 2−γn

)
= P

(
∪1≤k≤2n |X k

2n
−X k−1

2n
| ≥ 2−γn

)
≤

2n∑
k=1

P
(
|X k

2n
−X k−1

2n
| ≥ 2−γn

)

≤
2n∑
k=1

E
(
|X k

2n
−X k−1

2n
|α
)

2−γαn

≤ c2−n(ε−γα)

Therefore, since γα < ε, we deduce

+∞∑
n=1

P
(

max
1≤k≤2n

|X k
2n
−X k−1

2n
| ≥ 2−γn

)
< +∞.

From the Borel-Cantelli lemma, we can thus find a set Ω∗ ∈ F such that
P(Ω∗) = 1 and such that for ω ∈ Ω∗, there exists N(ω) such that for n ≥ N(ω),

max
1≤k≤2n

|X k
2n

(ω)−X k−1
2n

(ω)| ≤ 2−γn.

In particular, there exists an almost surely finite random variable C such that
for every n ≥ 0,

max
1≤k≤2n

|X k
2n

(ω)−X k−1
2n

(ω)| ≤ C2−γn

We now claim that the paths of the restricted process X/Ω∗ are consequently
γ-Hölder on D. Indeed, let s, t ∈ D. We can find n such that

| s− t |≤ 1

2n
.

We now pick an increasing and stationary sequence (sk)k≥n converging
toward s, such that sk ∈ Dk and

| sk+1 − sk |= 2−(k+1) or 0.

In the same way, we can find an analogue sequence (tk)k≥n that converges
toward t and such that sn and tn are neighbors in Dn. We have then:

Xt −Xs =

+∞∑
i=n

(Xsi+1 −Xsi) + (Xsn −Xtn) +

+∞∑
i=n

(Xti −Xti+1),

where the above sums are actually finite.
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Therefore,

|Xt −Xs| ≤ C2−γn + 2

+∞∑
k=n

C2−γ(k+1)

≤ 2C

+∞∑
k=n

2−γk

≤ 2C

1− 2−γ
2−γn.

Hence the paths of X/Ω∗ are γ-Hölder on the set D. For ω ∈ Ω∗, let

t → X̃t(ω) be the unique continuous function that agrees with t → Xt(ω)
on D. For ω /∈ Ω∗, we set X̃t(ω) = 0. The process (X̃t)t∈[0,1] is the desired
modification of (Xt)t∈[0,1]. 2

Exercise 1.25. Let α, ε, c > 0. Let (Xt)t∈[0,1] be a continuous Gaussian pro-
cess such that for s, t ∈ [0, 1],

E (‖Xt −Xs‖α) ≤ c | t− s |1+ε,

Show that for every γ ∈ [0, ε/α), there is a positive random variable η such that
E(ηp) <∞, for every p ≥ 1 and such that for every s, t ∈ [0, 1],

‖Xt −Xs‖ ≤ η|t− s|γ , a.s.

Hint: You may use the Garsia-Rodemich-Rumsey inequality which is stated in
Theorem 7.34, Chapter 7, in greater generality: Let p ≥ 1 and α > p−1, then
there exists a constant Cα,p > 0 such that for any continuous function f on
[0, T ], and for all t, s ∈ [0, T ] one has:

‖f(t)− f(s)‖p ≤ Cα,p|t− s|αp−1

∫ T

0

∫ T

0

‖f(x)− f(y)‖p

|x− y|αp+1
dxdy.

6 Stopping times

In the study of a stochastic process it is often useful to consider some properties
of the process that hold up to a random time. A natural question is for instance:
For how long is the process less than a given constant ?

Definition 1.26. Let (Ft)t≥0 be a filtration on a probability space (Ω,F ,P).
Let T be a random variable, measurable with respect to F and valued in
R≥0 ∪ {+∞}. We say that T is a stopping time of the filtration (Ft)t≥0 if for
t ≥ 0,

{T ≤ t} ∈ Ft.
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Often, a stopping time will be the time during which a stochastic process
adapted to the filtration (Ft)t≥0 satisfies a given property. The above definition
means that for any t ≥ 0, at time t, one is able to decide if this property is
satisfied or not.

Among the most important examples of stopping times, are the (first) hit-
ting times of a closed set by a continuous stochastic process.

Exercise 1.27 (First hitting time of a closed set by a continuous stochastic
process). Let (Xt)t≥0 be a continuous process adapted to a filtration (Ft)t≥0.
Let

T = inf{t ≥ 0, Xt ∈ F},

where F is a closed subset of R. Show that T is a stopping time of the filtration
(Ft)t≥0.

Given a stopping time T , we may define the σ-algebra of events that occur
before the time T :

Proposition 1.28. Let T be a stopping time of the filtration (Ft)t≥0. Let

FT = {A ∈ F ,∀t ≥ 0, A ∩ {T ≤ t} ∈ Ft}.

Then FT is a σ-algebra.

Proof. Since for every t ≥ 0, ∅ ∈ Ft, we have that ∅ ∈ FT . Let us now consider
A ∈ FT . We have

cA ∩ {T ≤ t} = {T ≤ t}\ (A ∩ {T ≤ t}) ∈ Ft,

and thus cA ∈ FT . Finally, if (An)n∈N is a sequence of subsets of FT ,

(∩n∈NAn) ∩ {T ≤ t} = ∩n∈N(An ∩ {T ≤ t}) ∈ Ft.

2

If T is a stopping time of a filtration with respect to which a given process is
adapted, then it is possible to stop this process in a natural way at the time T .
We let the proof of the corresponding proposition as an exercise to the reader.

Proposition 1.29. Let (Ft)t≥0 be a filtration on a probability space (Ω,F ,P)
and let T be an almost surely finite stopping time of the filtration (Ft)t≥0. Let
(Xt)t≥0 be a stochastic process that is adapted and progressively measurable
with respect to the filtration (Ft)t≥0. The stopped stochastic process (Xt∧T )t≥0

is progressively measurable with respect to the filtration (Ft∧T )t≥0.
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7 Martingales

We introduce and study in this section martingales in continuous time. Such
processes were first introduced and extensively studied by Joseph Doob. To-
gether with Markov processes they are among the most important class of
stochastic processes and lie at the hearth of the theory of stochastic integra-
tion.

Definition 1.30. Let (Ft)t≥0 be a filtration defined on a probability space
(Ω,F ,P). A process (Mt)t≥0 that is adapted to (Ft)t≥0 is called a submartin-
gale with respect to this filtration if:

1. For every t ≥ 0, E (|Mt |) < +∞;

2. For every t ≥ s ≥ 0

E (Mt | Fs) ≥Ms.

A stochastic process (Mt)t≥0 that is adapted to (Ft)t≥0 and such that (−Mt)t≥0

is a submartingale, is called a supermartingale.
Finally, a stochastic process (Mt)t≥0 that is adapted to (Ft)t≥0 and that is

at the same time a submartingale and a supermartingale is called a martingale.

The following exercises provide some first properties of these processes.

Exercise 1.31. Let (Ft)t≥0 be a filtration defined on a probability space (Ω,F ,P)
and let X be an integrable and F-measurable random variable. Show that the
process (E(X | Ft))t≥0 is a martingale with respect to the filtration (Ft)t≥0.

Exercise 1.32. Let (Ft)t≥0 be a filtration defined on a probability space (Ω,F ,P)
and let (Mt)t≥0 be a submartingale with respect to the filtration (Ft)t≥0. Show
that the function t→ E(Mt) is non-decreasing.

Exercise 1.33. Let (Ft)t≥0 be a filtration defined on a probability space (Ω,F ,P)
and let (Mt)t≥0 be a martingale with respect to the filtration (Ft)t≥0. Let now
ψ : R→ R be a convex function such that for t ≥ 0, E (| ψ(Mt) |) < +∞. Show
that the process (ψ(Mt))t≥0 is a submartingale.

The following theorem, which is due to Doob, turns out to be extremely
useful. It shows that martingales behave in a very nice way with respect to
stopping times.

Proposition 1.34 (Doob stopping theorem). Let (Ft)t≥0 be a filtration de-
fined on a probability space (Ω,F ,P) and let (Mt)t≥0 be a continuous stochastic
process that is adapted to the filtration (Ft)t≥0. The following properties are
equivalent:

1. (Mt)t≥0 is a martingale with respect to the filtration (Ft)t≥0;
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2. For any, almost surely bounded stopping time T of the filtration (Ft)t≥0

such that E(|MT |) < +∞, we have

E(MT ) = E(M0).

Proof. Let us assume that (Mt)t≥0 is a martingale with respect to the filtration
(Ft)t≥0. Let now T be a stopping time of the filtration (Ft)t≥0 that is almost
surely bounded by K > 0. Let us first assume that T takes its values in a finite
set:

0 ≤ t1 < ... < tn ≤ K.

Thanks to the martingale property, we have

E(MT ) = E

(
n∑
i=1

MT 1T=ti

)

=

n∑
i=1

E(Mti1T=ti)

=

n∑
i=1

E(Mtn1T=ti)

= E(Mtn)

= E(M0).

The theorem is therefore proved whenever T takes its values in a finite set.
If T takes an infinite number of values, we approximate T by the following
sequence of stopping times:

τn =

2n∑
k=1

kK

2n
1{ (k−1)K

2n ≤T< kK
2n }.

The stopping time τn takes its values in a finite set and when n→ +∞, τn → T .
To conclude the proof of the first part of the proposition, we therefore have to
show that

lim
n→+∞

E(Mτn) = E(MT ).

For this, we are going to show that the family (Mτn)n∈N is uniformly integrable.
Let A ≥ 0. Since τn takes its values in a finite set, by using the martingale

property and Jensen’s inequality, it is easily checked that

E(|MK |1Mτn≥A) ≥ E(|Mτn |1Mτn≥A).

Therefore,

E(Mτn1Mτn≥A) ≤ E(MK1sup0≤s≤KMs≥A)→A→+∞ 0.
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By uniform integrability, we deduce that

lim
n→+∞

E(Mτn) = E(MT ),

from which it is concluded

E(MT ) = E(M0).

Conversely, let us now assume that for any, almost surely bounded stopping
time T of the filtration (Ft)t≥0 such that E(|MT |) < +∞, we have

E(MT ) = E(M0).

Let 0 ≤ s ≤ t and A ∈ Fs. By using the stopping time

T = s1A + t1cA,

we are led to
E ((Mt −Ms)1A) = 0,

which implies the martingale property for (Mt)t≥0. 2

The hypothesis that the paths of (Mt)t≥0 be continuous is actually not
strictly necessary, however the hypothesis that the stopping time T be almost
surely bounded is essential, as it is proved in the following exercise.

Exercise 1.35. Let (Ft)t≥0 be a filtration defined on a probability space (Ω,F ,P)
and let (Mt)t≥0 be a continuous martingale with respect to the filtration (Ft)t≥0

such that M0 = 0 almost surely. For a > 0, we denote Ta = inf{t > 0,Mt = a}.
Show that Ta is a stopping time of the filtration (Ft)t≥0. Prove that Ta is not
almost surely bounded.

Exercise 1.36. Let (Ft)t≥0 be a filtration defined on a probability space (Ω,F ,P)
and let (Mt)t≥0 be a continuous submartingale with respect to the filtration
(Ft)t≥0. By mimicking the proof of Doob’s stopping theorem, show that if T1

and T2 are two almost surely bounded stopping times of the filtration (Ft)t≥0

such that T1 ≤ T2 and E(|MT1 |) < +∞, E(|MT2 |) < +∞, then,

E(MT1
) ≤ E(MT2

).

By using a similar proof, the Doob’s stopping theorem is easily extended as
follows:

Proposition 1.37. Let (Ft)t≥0 be a filtration defined on a probability space
(Ω,F ,P) and let (Mt)t≥0 be a continuous martingale with respect to the filtra-
tion (Ft)t≥0. If T1 and T2 are two almost surely bounded stopping times of the
filtration (Ft)t≥0 such that T1 ≤ T2 and E(| MT1 |) < +∞, E(| MT2 |) < +∞,
then,

E(MT2
| FT1

) = MT1
.
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Finally, as a direct consequence of Doob’s stopping theorem, we finally have
the following result that shall repeatedly be used in the sequel.

Proposition 1.38. Let (Ft)t≥0 be a filtration defined on a probability space
(Ω,F ,P) and let (Mt)t≥0 be a continuous martingale with respect to the filtra-
tion (Ft)t≥0. If T is a bounded stopping time of the filtration (Ft)t≥0 then the
stopped process (Mt∧T )t≥0 is a martingale with respect to the filtration (Ft)t≥0.

Proof. Let S be a bounded stopping time of the filtration (Ft)t≥0. From Doob’s
stopping theorem, we have E(MS∧T ) = E(M0). Since S is arbitrary, we con-
clude also from Doob’s theorem that (Mt∧T )t≥0 is a martingale with respect
to the filtration (Ft)t≥0. 2

We now turn to convergence theorems for martingales. These convergence
results rely on the notion of uniform integrability that we now remind.

Definition 1.39. Let (Xi)i∈I be a family of random variables. We say that
the family (Xi)i∈I is uniformly integrable if for every ε > 0, there exists K ≥ 0
such that

∀i ∈ I, E(| Xi | 1|Xi|>K) < ε.

We have the following properties:

• A finite family of integrable random variables is uniformly integrable ;

• If the family (Xi)i∈I is uniformly integrable then it is bounded in L1,
that is supI E(| Xi |) < +∞;

• If the family (Xi)i∈I is bounded in Lp with p > 1, that is supI E(| Xi |p
) < +∞, then it is uniformly integrable.

Thanks to the following result, the notion of uniform integrability is often used
to prove a convergence in L1:

Proposition 1.40. Let (Xn)n∈N be a sequence of integrable random variables.
Let X be an integrable random variable. The sequence (Xn)n∈N converges to-
ward X in L1, that is limn→+∞ E(| Xn −X |) = 0, if and only if:

1. In probability, Xn →n→+∞ X, that is for every ε > 0,

lim
n→+∞

P(| Xn −X |≥ ε) = 0;

2. The family (Xn)n∈N is uniformly integrable.

We have seen in Exercise 1.31 that if X is an integrable random vari-
able defined on a filtered probability space (Ω, (Ft)t≥0,F ,P) then the process
(E(X | Ft))t≥0 is a martingale with respect to the filtration (Ft)t≥0. The fol-
lowing theorem characterizes the martingales that are of this form.
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Theorem 1.41 (Doob convergence theorem). Let (Ft)t≥0 be a filtration defined
on a probability space (Ω,F ,P) and let (Mt)t≥0 be a martingale with respect
to the filtration (Ft)t≥0 whose paths are left limited and right continuous. The
following properties are equivalent:

1. When t→ +∞, (Mt)t≥0 converges in L1;

2. When t → +∞, (Mt)t≥0 almost surely converges toward an integrable
and F-measurable random variable X that satisfies

Mt = E(X | Ft), t ≥ 0;

3. The family (Mt)t≥0 is uniformly integrable.

Proof. As a first step, we show that if the martingale (Mt)t≥0 is bounded in
L1, that is

sup
t≥0

E(|Mt |) < +∞

then (Mt)t≥0 almost surely converges toward an integrable and F-measurable
random variable X.

Let us first observe that

{ω ∈ Ω,Mt(ω) converges} =

{
ω ∈ Ω, lim sup

t→+∞
Mt(ω) = lim inf

t→+∞
Mt(ω)

}
Therefore, in order to show that (Mt)t≥0 almost surely converges when t →
+∞, we may prove that

P
({

ω ∈ Ω, lim sup
t→+∞

Mt(ω) > lim inf
t→+∞

Mt(ω)

})
= 0.

Let us assume that

P
({

ω ∈ Ω, lim sup
t→+∞

Mt(ω) > lim inf
t→+∞

Mt(ω)

})
> 0.

In that case we may find a < b such that:

P
({

ω ∈ Ω, lim sup
t→+∞

Mt(ω) > a > b > lim inf
t→+∞

Mt(ω)

})
> 0.

The idea now is to study the oscillations of (Mt)t≥0 between a and b. For
N ∈ N, N > 0 and n ∈ N, we denote

Dn,N =

{
kN

2n
, 0 ≤ k ≤ 2n

}
,

and
D = ∪n,NDn,N .
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Let N (a, b, n,N) be the greatest integer k for which we may find elements
of Dn,N ,

0 ≤ q1 < r1 < q2 < r2 < ... < qk < rk ≤ N

that satisfy
Mqi < a, Mri > b.

Let now

Yn,N =

2n∑
k=1

C kN
2n

(M kN
2n
−M (k−1)N

2n
),

where Ck ∈ {0, 1} is recursively defined by:

C1 = 1M0<a,

Ck = 1Ck−1=11M (k−1)N
2n

≤b + 1Ck−1=01M (k−1)N
2n

<a.

Since (Mt)t≥0 is martingale, it is easily checked that

E(Yn,N ) = 0.

Furthermore, thanks to the very definition of N (a, b, n,N), we have

Yn,N ≥ (b− a)N (a, b, n,N)−max(a−MN , 0).

Therefore, we have

(b− a)E (N (a, b, n,N)) ≤ E (max(a−MN , 0))

≤| a | +E(|MN |)
≤| a | + sup

t>0
E(|Mt |),

and thus

(b− a)E
(

sup
n,N
N (a, b, n,N)

)
≤| a | + sup

t>0
E(|Mt |).

This implies that almost surely supn,N N (a, b, n,N) < +∞, from which it is
deduced

P
({

ω ∈ Ω, lim sup
t→+∞,t∈D

Mt(ω) > a > b > lim inf
t→+∞,t∈D

Mt(ω)

})
= 0.

Since the paths of (Mt)t≥0 are right continuous, we have

P
({

ω ∈ Ω, lim sup
t→+∞,t∈D

Mt(ω) > a > b > lim inf
t→+∞,t∈D

Mt(ω)

})
=P
({

ω ∈ Ω, lim sup
t→+∞

Mt(ω) > a > b > lim inf
t→+∞

Mt(ω)

})
.
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This is absurd. Thus, if (Mt)t≥0 is bounded in L1, it almost surely converges
toward an F-measurable random variable X. Fatou’s lemma provides the in-
tegrability of X.

With this preliminary result in hands, we can now turn to the proof of the
theorem.

Let us assume that (Mt)t≥0 converges in L1. In that case, it is of course
bounded in L1, and thus almost surely converges toward an F-measurable and
integrable random variable X. Let t ≥ 0 and A ∈ Ft, we have for s ≥ t,

E(Ms1A) = E(Mt1A)

By letting s→ +∞, the dominated convergence theorem yields

E(X1A) = E(Mt1A).

Therefore, as expected, we obtain

E(X | Ft) = Mt.

Let us now assume that (Mt)t≥0 almost surely converges toward an F-measurable
and integrable random variable X that satisfies

Mt = E(X | Ft), t ≥ 0.

We almost surely have supt≥0 |Mt |< +∞ and thus for A ≥ 0,

E(|Mt | 1|Mt|≥A) = E(| E(X | Ft) | 1|Mt|≥A)

≤ E(| X | 1|Mt|≥A)

≤ E(| X | 1supt≥0|Mt|≥A).

This implies the uniform integrability for the family (Mt)t≥0 .
Finally, if the family (Mt)t≥0 is uniformly integrable, then it is bounded

in L1 and therefore almost surely converges. The almost sure convergence,
together with the uniform integrability, provides the convergence in L1. 2

Exercise 1.42. By using the same reasoning as in the previous proof, show that
a right continuous and left limited positive supermartingale needs to converge
almost surely when t→∞.

When dealing with stochastic processes, it is often important to work with
versions of these processes whose paths are as regular as possible. In that
direction, the Kolmogorov’s continuity theorem (see Theorem 1.24) provided
a sufficient condition allowing to work with continuous versions of stochastic
processes. For martingales, the possibility of working with regular versions, is
related to the regularity properties of the filtration with respect to which the
martingale property is satisfied.
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Definition 1.43. Let (Ft)t≥0 be a filtration on a probability space (Ω,F ,P).
If the following assumptions are fulfilled :

1. If A ∈ F satisfies P(A) = 0, then every subset of A is in F0;

2. The filtration (Ft)t≥0 is right continuous , that is for every t ≥ 0

Ft = ∩ε>0Ft+ε,

the filtered probability space

(Ω, (Ft)t≥0,F ,P)

is said to satisfy the usual conditions.

Remark 1.44. The above set of assumptions are called the usual conditions
because, as we will see it in a next section, these are the conditions under which
it is convenient to work in order to properly define the stochastic integral

Remark 1.45. Let (Ft)t≥0 be a filtration on a probability space (Ω,F ,P) and
let (Mt)t≥0 be a (sub, super) martingale with respect to the filtration (Ft)t≥0

whose paths are right continuous and left limited. The filtered probability
space

(Ω, (Ft)t≥0,F ,P)

may canonically be enlarged into a filtered probability space

(Ω, (Gt)t≥0,G,P)

that satisfies the usual conditions. Indeed, G can be taken to be the P-
completion of F and

Gt = ∩u>tσ(Fu,N )

where N is the set of events whose probability is zero. Moreover (Mt)t≥0 is
a (sub, super) martingale with respect to the filtration (Gt)t≥0 (this is not
straightforward and let to the reader as an exercise ). The filtered probability
space

(Ω, (Gt)t≥0,G,P)

is called the usual completion of

(Ω, (Ft)t≥0,F ,P).

Exercise 1.46. Let (Ω, (Ft)t≥0,F ,P) be a filtered probability space that sat-
isfies the usual conditions and let (Xt)t≥0 be stochastic process adapted to the
filtration (Ft)t≥0 whose paths are left limited and right continuous. Let K be
compact subset of R. Show that the random time

T = inf{t ≥ 0, Xt ∈ K}

is a stopping time of the filtration (Ft)t≥0.
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Theorem 1.47 (Doob regularization theorem). Let (Ω, (Ft)t≥0,F ,P) be a fil-
tered probability space that satisfies the usual conditions and let (Mt)t≥0 be a
supermartingale with respect to the filtration (Ft)t≥0. Let us assume that the
function t→ E(Mt) is right continuous.

There exists a modification (M̃t)t≥0 of (Mt)t≥0 such that:

1. (M̃t)t≥0 is adapted to the filtration (Ft)t≥0;

2. The paths of (M̃t)t≥0 are locally bounded, right continuous and left lim-
ited;

3. (M̃t)t≥0 is a supermartingale with respect to the filtration (Ft)t≥0.

Proof. As for the proof of Doob’s convergence theorem, the idea is to study the
oscillations of (Mt)t≥0. In what follows, we will use the notations introduced
in the proof of this theorem that we remind below.

For N ∈ N, N > 0 and n ∈ N, we denote

Dn,N =

{
kN

2n
, 0 ≤ k ≤ 2n

}
,

DN = ∪nDn,N
and

D = ∪n,NDn,N .

For a < b, let N (a, b, n,N) be the greatest integer k for which we can find
elements of Dn,N ,

0 ≤ q1 < r1 < q2 < r2 < ... < qk < rk ≤ N

such that

Mqi < a,Mri > b.

Let now Ω∗ be the set of ω ∈ Ω such that ∀t ≥ 0, lims→t,s>t,s∈DMs(ω)
exists and is finite.

It is easily seen that

Ω∗ = ∩a,b∈Q∩N∈N∗
{
ω ∈ Ω, sup

t∈DN
|Mt(ω) |< +∞ et sup

n∈N
N (a, b, n,N) < +∞

}
.

Therefore, Ω∗ ∈ F . We may prove, as we proved the Doob’s convergence
theorem that P(Ω∗) = 1.

For t ≥ 0, we define (M̃t)t≥0 in the following way:

• If ω ∈ Ω∗,

M̃t(ω) = lim
s→t,s>t,s∈D

Ms(ω)
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• If ω /∈ Ω∗,
M̃t(ω) = 0.

It is clear that the paths of (M̃t)t≥0 are locally bounded, right continuous
and left limited. Let us now show that this process is the expected modification
of (Mt)t≥0.

We first observe that for t ≥ 0, the random variable

lim
s→t,s>t,s∈D

Ms

is measurable with respect to ∩s>tFs = Ft. Furthermore, Ω\Ω∗ has a zero
probability and is therefore in F0, according to the usual conditions. This
shows that the process (M̃t)t≥0 is adapted to the filtration (Ft)t≥0.

We now show that (M̃t)t≥0 is a modification of (Mt)t≥0. Let t ≥ 0. We
have almost surely

lim
s→t,s>t,s∈D

Ms = M̃t.

Let us prove that this convergence also holds in L1. To prove this, it is enough
to check that for every decreasing family (sn)n∈N such that sn ∈ D and that
converges toward t, the family (Msn)n∈N is uniformly integrable.

Let ε > 0. Since u→ E(Mu) is assumed to be right continuous, we can find
s ∈ R such that t < s and such that for every s > u > t,

0 ≤ E(Mu)− E(Ms) ≤
ε

2
.

For s > u > t and λ > 0, we have:

E(|Mu | 1|Mu|>λ) = −E(Mu1Mu<−λ) + E(Mu)− E(Mu1Mu≤−λ)

≤ −E(Ms1Mu<−λ) + E(Mu)− E(Ms1Mu≤−λ)

≤ E(|Ms | 1|Mu|>λ) +
ε

2
.

Now, since Ms ∈ L1, we can find δ > 0 such that for every F ∈ F that satisfies
P(F ) < δ, we have E(|Ms | 1F ) < ε

2 . But for t < u < s,

P(|Mu |> λ) ≤ E(|Mu |)
λ

=
E(Mu) + 2E(max(−Mu, 0))

λ
.

From Jensen inequality, it is seen that the process (max(−Mu, 0))t<u<s is a
submartingale, therefore

E(max(−Mu, 0)) ≤ E(max(−Ms, 0)).

We deduce that for t < u < s,

P(|Mu |> λ) ≤ E(Mt) + 2E(max(−Ms, 0))

λ
.
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It is thus possible to find A > 0 such that for every t < u < s,

P(|Mu |> A) < δ,

For t < u < s, we have then

E(|Mu | 1|Mu|>λ) < ε.

This implies that for every decreasing family (sn)n∈N such that sn ∈ D and
that converges toward t, the family (Msn)n∈N is uniformly integrable. The
convergence

lim
s→t,s>t,s∈D

Ms = M̃t

thus also holds in L1. Now, since (Mt)t≥0 is a supermartingale, for s ≥ t we
have

E (Ms | Ft) ≤Mt.

This implies,
lim

s→t,s>t,s∈D
E (Ms | Ft) ≤Mt,

and
E
(
M̃t | Ft

)
≤Mt.

Hence, since M̃t is adapted to the filtration Ft

M̃t ≤Mt,

Due to the fact that the function u→ E(Mu) is right continuous, we have

lim
s→t,s>t,s∈D

E(Ms) = E(Mt).

But from the L1 convergence, we also have

lim
s→t,s>t,s∈D

E(Ms) = E
(

lim
s→t,s>t,s∈D

Ms

)
= E(M̃t),

This gives
E(M̃t) = E(Mt).

The random variable Mt − M̃t is therefore non-negative and has a zero
expectation. This implies that almost surely Mt = M̃t. The stochastic process
(M̃t)t≥0 is therefore a modification of (Mt)t≥0. Finally, since a modification
of a supermartingale is still a supermartingale, this concludes the proof of the
theorem. 2

The following exercise shows that martingales naturally appear when study-
ing equivalent measures on a filtered probability space. We first recall a basic
theorem from measure theory which is known as the Radon-Nikodym theorem.
Let Ω be a set endowed with a σ-field F .
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Definition 1.48. Let P and Q be probability measures on (Ω,F). It is said
that P is absolutely continuous with respect to Q if for every A ∈ F , Q(A) = 0
implies P(A) = 0. We denote then P � Q. If P � Q and Q � P, it is said
that P and Q are equivalent: In that case we denote P � Q.

Theorem 1.49 (Radon-Nikodym). Let P and Q be two probability measures
on (Ω,F). We have P� Q if and only if there is a random variable D, which
is F-measurable and such that for every A ∈ F ,

P(A) =

∫
A

DdQ.

D is called the density of P with respect to Q and we denote

D =
dP
dQ

.

Moreover, under the same assumptions P � Q if and only if D is positive P-a.s.
In that case:

dQ
dP

=
1

D
.

Exercise 1.50. Let (Ω, (Ft)t≥0,F ,P) be a filtered probability space that satis-
fies the usual conditions. We denote

F∞ = σ (Ft, t ≥ 0)

and for t ≥ 0, P/Ft is the restriction of P to Ft. Let Q be a probability measure
on F∞ such that for every t ≥ 0,

Q/Ft � P/Ft .

1. Show that there exists a right continuous and left limited martingale
(Dt)t≥0 such that for every t ≥ 0,

Dt =
dQ/Ft
dP/Ft

, P− a.s.

2. Show that the following properties are equivalent:

(a) Q/F∞ � P/F∞ ;

(b) The martingale (Dt)t≥0 is uniformly integrable;

(c) (Dt)t≥0 converges in L1;

(d) (Dt)t≥0 almost surely converges to an integrable and F∞-measurable
random variable D such that

Dt = E(D | Ft), t ≥ 0.
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8 Martingale inequalities

In this section, we prove some fundamental martingale inequalities that, once
again, are due to Doob

Theorem 1.51 (Doob maximal inequalities). Let (Ft)t≥0 be a filtration on
a probability space (Ω,F ,P) and let (Mt)t≥0 be a continuous martingale with
respect to the filtration (Ft)t≥0.

1. Let p ≥ 1 and T > 0. If E(|MT |p) < +∞, then for every λ > 0,

P
(

sup
0≤t≤T

|Mt |≥ λ
)
≤ E (|MT |p)

λp
.

2. Let p > 1 and T > 0. If E(|MT |p) < +∞, then

E
((

sup
0≤t≤T

|Mt |
)p)

≤
(

p

p− 1

)p
E(|MT |p).

Proof.

1. Let p ≥ 1 and T > 0. If E(|MT |p) < +∞) then, from Jensen inequality
the process (|Mt |p)0≤t≤T is a submartingale. Let λ > 0 and

τ = inf{s ≥ 0 such that |Ms |≥ λ} ∧ T,

with the convention that inf ∅ = +∞. It is seen that τ is an almost surely
bounded stopping time. Therefore

E(|Mτ |p) ≤ E(|MT |p).

But from the very definition of τ ,

|Mτ |p≥ 1sup0≤t≤T |Mt|≥λλ
p + 1sup0≤t≤T |Mt|<λ |MT |p,

which implies,

P
(

sup
0≤t≤T

|Mt |≥ λ
)
≤

E
(
|MT |p 1sup0≤t≤T |Mt|≥λ

)
λp

≤ E (|MT |p)
λp

.

2. Let p ≥ 1 and T > 0. Let us first assume that

E
((

sup
0≤t≤T

|Mt |
)p)

< +∞.
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The previous proof shows that for λ > 0,

P
(

sup
0≤t≤T

|Mt |≥ λ
)
≤

E
(
|MT | 1sup0≤t≤T |Mt|≥λ

)
λ

.

We deduce, ∫ +∞

0

λp−1P
(

sup
0≤t≤T

|Mt |≥ λ
)
dλ

≤
∫ +∞

0

λp−2E
(
|MT | 1sup0≤t≤T |Mt|≥λ

)
dλ.

From Fubini theorem we now have∫ +∞

0

λp−1P
(

sup
0≤t≤T

|Mt |≥ λ
)
dλ

=

∫
Ω

(∫ sup0≤t≤T |Mt|(ω)

0

λp−1dλ

)
dP(ω)

=
1

p
E
((

sup
0≤t≤T

|Mt |
)p)

.

Similarly, we obtain∫ +∞

0

λp−2E
(
|MT | 1sup0≤t≤T |Mt|≥λ

)
dλ

=
1

p− 1
E

((
sup

0≤t≤T
|Mt |

)p−1

|MT |

)
.

Hence,

E
((

sup
0≤t≤T

|Mt |
)p)

≤ p

p− 1
E

((
sup

0≤t≤T
|Mt |

)p−1

|MT |

)
.

By using now Hölder’s inequality we obtain,

E

((
sup

0≤t≤T
|Mt |

)p−1

|MT |

)
≤ E (|MT |p)

1
p E
((

sup
0≤t≤T

|Mt |
)p) p−1

p

,

which implies

E
((

sup
0≤t≤T

|Mt |
)p)

≤ p

p− 1
E (|MT |p)

1
p E
((

sup
0≤t≤T

|Mt |
)p) p−1

p

.
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As a conclusion if E
((

sup0≤t≤T |Mt |
)p)

< +∞, we have:

E
((

sup
0≤t≤T

|Mt |
)p)

≤
(

p

p− 1

)p
E(|MT |p).

Now, if E
((

sup0≤t≤T |Mt |
)p)

= +∞, we consider for N ∈ N, the stop-
ping time τN = inf{t ≥ 0, | Mt |≥ N} ∧ T . By using the above result to
the martingale (Mt∧τN )t≥0, we obtain

E
((

sup
0≤t≤T

|Mt∧τN |
)p)

≤
(

p

p− 1

)p
E(|MT |p),

from which we may conclude by using the monotone convergence theorem.

2

Notes and comments

We mostly restricted our attention to continuous stochastic processes but a gen-
eral theory of left limited right continuous processes can similarly be developed,
see the books by Jacod-Shiryaev [?] and by Protter [?] for a detailed account
on jump processes. As pointed out in the text, most of the material concerning
filtrations, martingales and stopping times is due to Doob and was exposed
in his extremely influential book [?]. Further readings about the general the-
ory of stochastic processes and martingales include the classical references by
Dellacherie-Meyer [?], Ikeda-Watanabe [?], Protter [?] and Revuz-Yor [?].



Chapter 2

Brownian motion

The chapter is devoted to the study of the Brownian motion. This is without
doubt the most important continuous stochastic process and will serve as a
canonical example in most of the developments of the next chapters. It is at
the same time a Gaussian process, a martingale and a Markov process. In
the first part of the chapter we prove the existence of the Brownian motion
as a consequence of the Daniell-Kolmogorov and of the Kolmogorov continu-
ity theorem. We apply the martingale techniques developed in Chapter 1 to
study basic properties of the Brownian motion paths like the law of iterated
logarithm. The second part of the chapter focusses on the point of view that
the Brownian motion can be seen as a continuous random walk in continuous
time. More precisely, we will prove that the Brownian motion is the limit of
suitably rescaled symmetric random walks. The study of random walks will
then allow us to obtain several properties of the Brownian motion paths by a
limiting procedure.

1 Definition and basic properties

Definition 2.1. Let (Ω,F ,P) be a probability space. A continuous real-valued
process (Bt)t≥0 is called a standard Brownian motion if it is a Gaussian process
with mean function

E(Bt) = 0

and covariance function

E(BsBt) = min(s, t).

Remark 2.2. It is seen that R(s, t) = min(s, t) is a covariance function, be-
cause it is obviously symmetric and for a1, ..., an ∈ R and t1, ..., tn ∈ R≥0,

∑
1≤i,j≤n

aiaj min(ti, tj) =
∑

1≤i,j≤n

aiaj

∫ +∞

0

1[0,ti](s)1[0,tj ](s)ds

=

∫ +∞

0

(
n∑
i=1

ai1[0,ti](s)

)2

ds ≥ 0.

Definition 2.3. The distribution of a standard Brownian motion, which is
thus a probability measure on the space of continuous functions C(R≥0,R) is
called the Wiener measure.
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Remark 2.4. A n-dimensional stochastic process (Bt)t≥0 is called a standard
Brownian motion if

(Bt)t≥0 = (B1
t , · · · , Bnt )t≥0

where the processes (Bit)t≥0 are independent standard Brownian motions.

Of course, the definition of Brownian motion is worth only because such an
object exists.

Theorem 2.5. There exist a probability space (Ω,F ,P) and a stochastic process
on it which is a standard Brownian motion.

Proof. From the Proposition 1.19, there exists a probability space (Ω,F ,P)
and a Gaussian process (Xt)t≥0 on it, whose mean function is 0 and covariance
function is

E(XsXt) = min(s, t).

We have for n ≥ 0 and 0 ≤ s ≤ t:

E
(
(Xt −Xs)

2n
)

=
(2n)!

2nn!
(t− s)n.

Therefore, by using the Kolmogorov continuity theorem, there exists a modifi-
cation (Bt)t≥0 of (Xt)t≥0 whose paths are locally γ-Hölder if γ ∈ [0, n−1

2n ). 2

Remark 2.6. From the previous proof, we also deduce that the paths of a
standard Brownian motion are locally γ-Hölder for every γ < 1

2 . It can be
shown that they are not 1

2 -Hölder (see Exercise 2.12 and Theorem 2.23).

The following exercises give some first basic properties of Brownian motion
and study some related processes. In all the exercises, (Bt)t≥0 is a standard
one-dimensional Brownian motion.

Exercise 2.7. Show the following properties:

1. B0 = 0 a.s.;

2. For any h ≥ 0, the process (Bt+h−Bh)t≥0 is a standard Brownian motion;

3. For any t > s ≥ 0, the random variable Bt − Bs is independent of the
σ-algebra σ(Bu, u ≤ s).

Exercise 2.8 (Symmetry property of the Brownian motion).

1. Show that the process (−Bt)t≥0 is a standard Brownian motion.

2. More generally, show that if

(Bt)t≥0 = (B1
t , · · · , Bdt )t≥0

is a d-dimensional Brownian motion and if M is an orthogonal d × d
matrix, then (MBt)t≥0 is a standard Brownian motion.
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Exercise 2.9 (Scaling property of the Brownian motion). Show that for every
c > 0, the process (Bct)t≥0 has the same law as the process (

√
cBt)t≥0.

Exercise 2.10 (Time inversion property of Brownian motion).

1. Show that almost surely, limt→+∞
Bt
t = 0.

2. Deduce that the process (tB 1
t
)t≥0 has the same law as the process (Bt)t≥0.

Exercise 2.11 (Non-canonical representation of Brownian motion).

1. Show that for t > 0, the Riemann integral
∫ t

0
Bs
s ds almost surely exists.

2. Show that the process
(
Bt −

∫ t
0
Bs
s ds

)
t≥0

is a standard Brownian motion.

Exercise 2.12. Show that

P

(
sup

s,t∈[0,1]

|Bt −Bs|√
t− s

= +∞

)
= 1.

Hint: Divide the interval [0, 1] in subintervals [k/n, (k + 1)/n] to bound from

below sups,t∈[0,1]
|Bt−Bs|√

t−s by the supremum of the absolute value of independent

Gaussian random variables.

Exercise 2.13 (Non-differentiability of the Brownian paths).

1. Show that if f : (0, 1) → R is differentiable at t ∈ (0, 1), then there exist
an interval (t−δ, t+δ) and a constant C > 0 such that for s ∈ (t−δ, t+δ),

|f(t)− f(s)| ≤ C|t− s|.

2. For n ≥ 1, let

Mn

= min
1≤k≤n

{max{|Bk/n −B(k−1)/n|, |B(k+1)/n −Bk/n|, |B(k+2)/n −Bk+1/n|}}.

Show that limn→+∞ P(Mn) = 0.

3. Deduce that

P (∃t ∈ (0, 1), B is differentiable at t) = 0.

Exercise 2.14 (Fractional Brownian motion). Let 0 < H < 1.
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1. Show that for s ∈ R, the function

fs(t) = (|t− s|H− 1
2 − 1(−∞,0](t)|t|H−

1
2 )1(−∞,s](t)

is square integrable on R.

2. Deduce that

R(s, t) =
1

2

(
s2H + t2H − |t− s|2H

)
, s, t ≥ 0

is a covariance function.

3. A continuous and centered Gaussian process with covariance function R
is called a fractional Brownian motion with parameter H. Show that such
process exists and study its Hölder sample path regularity.

4. Let (Bt)t≥0 be a fractional Brownian motion with parameter H. Show
that for any h ≥ 0, the process (Bt+h − Bh)t≥0 is a fractional Brownian
motion.

5. Show that for every c > 0, the process (Bct)t≥0 has the same law as the
process (cHBt)t≥0

Exercise 2.15 (Brownian bridge). Let T > 0 and x ∈ R.

1. Show that the process

Xt =
t

T
x+Bt −

t

T
BT , , 0 ≤ t ≤ T,

is a Gaussian process. Compute its mean function and its covariance
function.

2. Show that (Xt)0≤t≤T is a Brownian motion conditioned to be x at time
T , that is for every 0 ≤ t1 ≤ · · · ≤ tn < T , and A1, · · · , An Borel sets of
R,

P(Xt1 ∈ A1, · · · , Xtn ∈ An) = P(Bt1 ∈ A1, · · · , Btn ∈ An|BT = x).

3. Let (αn)n≥0, (βn)n≥1 be two independent sequences of i.i.d. Gaussian
random variables with mean 0 and variance 1. By using the Fourier
series decomposition of the process Bt− tB1, show that the random series

Xt = tα0 +
√

2

+∞∑
n=1

(
αn
2πn

(cos(2πnt)− 1) +
βn

2πn
sin(2πnt)

)
is a Brownian motion on [0, 1].
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Exercise 2.16 (Ornstein-Uhlenbeck process). We denote

Xt = e
t
2B1−e−t , t ≥ 0.

1. Show that (Xt)t≥0 is a Gaussian process. Compute its mean function and
its covariance function.

2. Show that the process

Xt −
1

2

∫ t

0

Xudu

is a Brownian motion.

2 Basic properties

In this section, we study some basic properties of the Brownian motion paths.

Proposition 2.17. Let (Bt)t≥0 be a standard Brownian motion.

P
(

inf
t≥0

Bt = −∞, sup
t≥0

Bt = +∞
)

= 1.

Proof. Since the process (−Bt)t≥0 is also a Brownian motion, in order to prove
that

P
(

inf
t≥0

Bt = −∞, sup
t≥0

Bt = +∞
)

= 1,

we just have to check that

P
(

sup
t≥0

Bt = +∞
)

= 1.

Let N ∈ N. From the scaling property of Brownian motion we have

P
(
c sup
t≥0

Bt ≤ N
)

= P
(

sup
t≥0

Bt ≤ N
)
, c > 0.

Therefore we have

P
(

sup
t≥0

Bt ≤ N
)

= P
(

sup
t≥0

Bt = 0

)
.

Now, we may observe that

P
(

sup
t≥0

Bt = 0

)
≤P
(
B1 ≤ 0, sup

t≥1
Bt ≤ 0

)
=P
(
B1 ≤ 0, sup

t≥0
(Bt+1 −B1) ≤ −B1

)
.
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Since the process (Bt+1−B1)t≥0 is a Brownian motion independent of B1 (see
Exercise 2.7), we have, as before, for c > 0,

P
(
B1 ≤ 0, sup

t≥0
(Bt+1 −B1) ≤ −B1

)
= P

(
B1 ≤ 0, c sup

t≥0
(Bt+1 −B1) ≤ −B1

)
.

Therefore we get

P
(
B1 ≤ 0, sup

t≥0
(Bt+1 −B1) ≤ −B1

)
= P

(
B1 ≤ 0, sup

t≥0
(Bt+1 −B1) = 0

)
= P (B1 ≤ 0)P

(
sup
t≥0

(Bt+1 −B1) = 0

)
=

1

2
P
(

sup
t≥0

Bt = 0

)
.

Thus,

P
(

sup
t≥0

Bt = 0

)
≤ 1

2
P
(

sup
t≥0

Bt = 0

)
,

and we can deduce that

P
(

sup
t≥0

Bt = 0

)
= 0,

and

P
(

sup
t≥0

Bt ≤ N
)

= 0.

Since this holds for every N , it implies that

P
(

sup
t≥0

Bt = +∞
)

= 1.

2

By using this proposition in combination with Exercise 2.7 we deduce the
following proposition whose proof is let as an exercise to the reader.

Proposition 2.18 (Recurrence property of Brownian motion). Let (Bt)t≥0 be
a Brownian motion. For every t ≥ 0 and x ∈ R,

P(∃s ≥ t, Bs = x) = 1.

Martingale theory provides powerful tools to study Brownian motion. We
list in the Proposition below some martingales naturally associated with the
Brownian motion.

Proposition 2.19. Let (Bt)t≥0 be a standard Brownian motion. The following
processes are martingales (with respect to their natural filtration):
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1. (Bt)t≥0;

2. (B2
t − t)t≥0;

3.
(
eλBt−

λ2

2 t
)
t≥0

, λ ∈ C.

Proof.

1. First, we note that for t ≥ 0, E(| Bt |) < +∞ because Bt is a Gaussian
random variable. Now for t ≥ s,

E(Bt −Bs | Fs) = E(Bt −Bs) = 0,

therefore we get
E(Bt | Fs) = Bs.

2. For t ≥ 0, E(B2
t ) = t < +∞ and for t ≥ s,

E((Bt −Bs)2 | Fs) = E((Bt −Bs)2) = t− s,

therefore we obtain

E(B2
t − t | Fs) = B2

s − s.

3. For t ≥ 0, E
(∣∣∣eλBt−λ22 t∣∣∣) < +∞, because Bt is a Gaussian random

variable. Then we have for t ≥ s,

E(eλ(Bt−Bs) | Fs) = E(eλ(Bt−Bs)) = e
λ2

2 (t−s)

, and therefore

E
(
eλBt−

λ2

2 t | Fs
)

= eλBs−
λ2

2 s.

2

Remark 2.20. The curious reader may wonder how the previous martingales
have been constructed. A first hint is that the functions (t, x) → x, (t, x) →
x2 − t, and (t, x) → exp

(
λx− λ2

2 t
)

have in common that they satisfy the

following partial differential equation

∂f

∂t
+

1

2

∂2f

∂x2
= 0.

The full explanation will be given in the Theorem 3.9 in Chapter 3.

Exercise 2.21. Let (Bt)t≥0 be a standard Brownian motion. Let a < 0 < b.
We denote

T = inf{t ≥ 0, Bt /∈ (a, b)}.
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1. Show that T is a stopping time.

2. Show that

P (BT = a) =
b

b− a
, P (BT = b) =

−a
b− a

.

3. Deduce another proof of the recurrence property of the standard Brownian
motion, that is for every t ≥ 0 and x ∈ R,

P(∃s ≥ t, Bs = x) = 1.

The previous martingales may be used to explicitly compute the distribution
of some functionals associated to the Brownian motion.

Proposition 2.22. Let (Bt)t≥0 be a standard Brownian motion. We denote
for a > 0,

Ta = inf{t ≥ 0, Bt = a}.
For every λ > 0, we have

E
(
e−λTa

)
= e−a

√
2λ.

Therefore, the distribution of Ta is given by the density function

P(Ta ∈ dt) =
a

(2πt)3/2
e−

a2

2t dt, t > 0.

Proof. Let α > 0. For N ≥ 1, we denote by TN the almost surely bounded
stopping time:

TN = Ta ∧N.

Applying the Doob’s stopping theorem to the martingale
(
eαBt−

α2

2 t
)
t≥0

yields:

E
(
eαBTa∧N−

α2

2 (Ta∧N)
)

= 1.

But for N ≥ 1, we have

eαBTa∧N−
α2

2 (Ta∧N) ≤ eαa.

Therefore from Lebesgue dominated convergence theorem, n→ +∞, we obtain

E
(
eαBTa−

α2

2 Ta
)

= 1.

Since by continuity of the Brownian paths we have,

BTa = a,

we conclude,

E
(
e−

α2

2 Ta
)

= e−αa.

The formula for the density function of Ta is then obtained by inverting the
previous Laplace transform. 2
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3 The law of iterated logarithm

We already observed that as a consequence of Kolmogorov’s continuity theorem,
the Brownian paths are γ-Hölder continuous for every γ ∈

(
0, 1

2

)
. The next

proposition, which is known as the law of iterated logarithm shows in particular
that Brownian paths are not 1

2 -Hölder continuous.

Theorem 2.23 (Law of iterated logarithm). Let (Bt)t≥0 be a Brownian mo-
tion. For s ≥ 0,

P

lim inf
t→0

Bt+s −Bs√
2t ln ln 1

t

= −1 , lim sup
t→0

Bt+s −Bs√
2t ln ln 1

t

= 1

 = 1.

Proof. Thanks to the symmetry and invariance by translation of the Brownian
paths, it suffices to show that :

P

lim sup
t→0

Bt√
2t ln ln 1

t

= 1

 = 1.

Let us first prove that

P

lim sup
t→0

Bt√
2t ln ln 1

t

≤ 1

 = 1.

Let us denote

h(t) =

√
2t ln ln

1

t
.

Let α, β > 0, from Doob’s maximal inequality applied to the exponential mar-

tingale
(
eαBt−

α2

2 t
)
t≥0

, we have for t ≥ 0:

P
(

sup
0≤s≤t

(
Bs −

α

2
s
)
> β

)
= P

(
sup

0≤s≤t
eαBs−

α2

2 s > eαβ
)
≤ e−αβ .

Let now θ, δ ∈ (0, 1). Using the previous inequality for every n ∈ N with

t = θn, α =
(1 + δ)h(θn)

θn
, β =

1

2
h(θn),

yields when n→ +∞,

P
(

sup
0≤s≤θn

(
Bs −

(1 + δ)h(θn)

2θn
s

)
>

1

2
h(θn)

)
= O

(
1

n1+δ

)
.
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Therefore from Borel-Cantelli lemma, for almost every ω ∈ Ω, we may find
N(ω) ∈ N such that for n ≥ N(ω),

sup
0≤s≤θn

(
Bs(ω)− (1 + δ)h(θn)

2θn
s

)
≤ 1

2
h(θn).

But

sup
0≤s≤θn

(
Bs(ω)− (1 + δ)h(θn)

2θn
s

)
≤ 1

2
h(θn)

implies that for θn+1 < t ≤ θn,

Bt(ω) ≤ sup
0≤s≤θn

Bs(ω) ≤ 1

2
(2 + δ)h(θn) ≤ (2 + δ)h(t)

2
√
θ

.

We conclude

P

lim sup
t→0

Bt√
2t ln ln 1

t

≤ 2 + δ

2
√
θ

 = 1.

Letting now θ → 1 and δ → 0 yields

P

lim sup
t→0

Bt√
2t ln ln 1

t

≤ 1

 = 1.

Let us now prove that

P

lim sup
t→0

Bt√
2t ln ln 1

t

≥ 1

 = 1.

Let θ ∈ (0, 1). For n ∈ N, we denote

An =
{
ω,Bθn(ω)−Bθn+1(ω) ≥ (1−

√
θ)h(θn)

}
.

Let us prove that ∑
n∈N

P(An) = +∞.

The basic inequality∫ +∞

a

e−
u2

2 du ≥ a

1 + a2
e−

a2

2 , a > 0,

which is obtained by integrating by parts the left side of∫ +∞

a

1

u2
e−

u2

2 du ≤ 1

a2

∫ +∞

a

e−
u2

2 du,
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implies

P(An) =
1√
2π

∫ +∞

an

e−
u2

2 du ≥ an
1 + a2

n

e−
a2n
2 ,

with

an =
(1−

√
θ)h(θn)

θn/2
√

1− θ
.

When n→ +∞,

an
1 + a2

n

e−
a2n
2 = O

(
1

n
1+θ−2

√
θ

1−θ

)
,

therefore we proved, ∑
P(An) = +∞.

As a consequence of the independence of the increments of the Brownian motion
and of Borel-Cantelli lemma, the event

Bθn −Bθn+1 ≥ (1−
√
θ)h(θn)

will occur almost surely for infinitely many n’s. But, thanks to the first part
of the proof, for almost every ω, we may find N(ω) such that for n ≥ N(ω)

Bθn+1 > −2h(θn+1) ≥ −2
√
θh(θn).

Thus, almost surely, the event

Bθn > h(θn)(1− 3
√
θ)

will occur for infinitely many n’s. This implies

P

lim sup
t→0

Bt√
2t ln ln 1

t

≥ 1− 3
√
θ

 = 1.

We finally get

P

lim sup
t→0

Bt√
2t ln ln 1

t

≥ 1

 = 1.

by letting θ → 0.
2

As a straightforward consequence, we may observe that the time inversion
invariance property of Brownian motion implies:

Corollary 2.24. Let (Bt)t≥0 be a standard Brownian motion.

P
(

lim inf
t→+∞

Bt√
2t ln ln t

= −1 , lim sup
t→+∞

Bt√
2t ln ln t

= 1

)
= 1.
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4 Symmetric random walks

In the previous section, the existence of the Brownian motion was proven as a
consequence of Daniell-Kolmogorov theorem. However, as it has been stressed,
the proof of Daniell-Kolmogorov theorem relies on the axiom of choice. As
a consequence, it does not provide any insight of how Brownian motion may
explicitly be constructed or simulated by computers. In this section, we provide
an explicit construction of Brownian motion as a limit of a sequence of suitably
rescaled symmetric random walks.

Definition 2.25. A random walk on Z is a sequence of Z-valued random
variables (Sn)≥0 that are defined on a probability space (Ω,F ,P) for which the
following two properties hold:

1. (Sn)≥0 has stationary increments, that is for m,n ∈ N, Sm+n − Sm has
the same distribution as Sn

2. (Sn)≥0 has independent increments, that is for m,n ∈ N, Sm+n − Sm is
independent from the σ-field σ (S0, ..., Sm) .

For instance, let us consider a game in which we toss a fair coin. If this
is heads, the player earns 1$, if this is tails, the player loses 1$. Then the
algebraic wealth of the player after n tosses is a random walk on Z.

More precisely, let us consider a sequence of independent random variables
(Xi)i≥1 that are defined on a probability space (Ω,F ,P) and that satisfy

P (Xi = −1) = P (Xi = 1) =
1

2

Consider now the sequence (Sn)n≥0 such that S0 = 0 and for n ≥ 1

Sn =

n∑
i=1

Xi

For n ≥ 0, we will denote by Fn the σ-field generated by the random
variables S0, ..., Sn.

Proposition 2.26. The sequences (Sn)n≥0 and (−Sn)n≥0 are random walks
on Z.

Proof. As a consequence of the independence of the Xi’s, the following equality
holds in distribution

(X1, ..., Xn) = (Xm+1, ..., Xm+n) .

Therefore, in distribution we have

Sn+m − Sm =

n+m∑
k=m+1

Xk =

n∑
k=1

Xk = Sn.
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The independence of the increments is shown in the very same way and the
proof that (−Sn)n≥0 is also a random walk is identical.

2

The random walk (Sn)n≥0 is called the symmetric random walk on Z and
is the one which shall be the most important for us. Its distribution may be
computed by standard combinatorial arguments.

Proposition 2.27. For n ∈ N, k ∈ Z:

1. If the integers n and k have the same parity:

P(Sn = k) =
1

2n

(
n
n+k

2

)
,

where

(
n
p

)
= n!

p!(n−p)! is the binomial coefficient.

2. If the integers n and k do not have the same parity

P(Sn = k) = 0.

.

Proof. We observe that the random variable n+Sn
2 is the sum of n independent

Bernoulli random variables, therefore the distribution of n+Sn
2 is binomial with

parameters (0, n). The result follows directly.
2

Exercise 2.28. For x ∈ R, by using Stirling’s formula (n! ∼ e−nnn
√

2πn) give
an equivalent when n→∞ of P (S2n = 2[x]) , where [x] denotes the integer part
of x.

Several interesting martingales are naturally associated to the symmetric
random walk. They play the same role in the study of (Sn)n≥o as the martin-
gales in Theorem 2.19 for the Brownian motion.

Proposition 2.29. The following sequences of random variables are martin-
gales with respect to the filtration (Fn)n≥0:

1. (Sn)n≥0

2.
(
S2
n − n

)
n≥0

3. exp (−λSn − n ln(cosh(λ))) , n ≥ 1, λ > 0.

Proof.
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1. For n ≥ m

E (Sn | Fm) = E (Sn − Sm | Fm) + E (Sm | Fm)
= E (Sn − Sm) + Sm
= Sm

2. First, let us observe that

E
(
S2
n

)
= E

(
(
∑n
i=1Xi)

2
)

= E
(∑n

i,j=1XiXj

)
=

∑n
i=1 E

(
X2
i

)
+
∑n
i,j=1,i6=j E (Xi)E (Xj)

= n

Now, for n ≥ m, we have

E
(

(Sn − Sm)
2 | Fm

)
= E

(
(Sn − Sm)

2
)

= E
(
S2
n−m

)
= n−m

But, on the other hand we have

E
(

(Sn − Sm)
2 | Fm

)
= E

(
S2
n | Fm

)
− 2E (SnSm | Fm) + E

(
S2
m | Fm

)
= E

(
S2
n | Fm

)
− 2S2

m + S2
m

= E
(
S2
n | Fm

)
− S2

m.

We therefore conclude

E
(
S2
n − n | Fm

)
= S2

m −m.

3. Similarly, we have for n ≥ m

E
(
e−λ(Sn−Sm) | Fm

)
= E

(
e−λ(Sn−Sm)

)
= E

(
e−λSn−m

)
= E

(
e−λX1

)n−m
= (coshλ)

n−m
,

which yields the expected result.

2

The following proposition shows that the symmetric random walk is a
Markov process.

Proposition 2.30 (Markov property of the random walk). For m ≤ n, k ∈ Z,

P (Sn = k | Fm) = P (Sn = k | Sm) .
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Proof. We have for λ > 0,

E
(
e−λSn | Fm

)
= (coshλ)

n−m
e−λSm .

Thus, we have
E
(
e−λSn | Fm

)
= E

(
e−λSn | Sm

)
.

Since the the conditional distribution of Sn given Fm is completely character-
ized by its conditional Laplace transform, we obtain the claimed result. 2

A random variable T , valued in N∪{+∞}, is called a stopping time for the
random walk (Sn)n≥0 if for any m, the event {T ≤ m} belongs to the σ-field
Fm. The set

FT = {A ∈ F , ∀ m ∈ N, A ∩ {T ≤ m} ∈ Fm}

is then a sub σ-field of F .

Proposition 2.31. Let T be a stopping time for the random walk (Sn)n≥0 such

that P (T < +∞) = 1. The sequence (Sn+T − ST )n≥0 is a symmetric random
walk on Z that is independent from FT .

Proof. Let us denote
S̃n = Sn+T − ST

and consider the stopping time

Tm = T +m.

From the Doob’s stopping theorem applied to the martingale
(

(cosλ)
−n

eiλSn
)
n≥0

and the bounded stopping time Tm ∧N where N ∈ N, we get, ∀ n ∈ N

E
(

(cosλ)
−n

eiλ(Sn+Tm∧N−STm∧N ) | FTm∧N
)

= 1.

Letting N → +∞ yields ∀ n ∈ N

E
(

(cosλ)
−n

eiλ(S̃n+m−S̃m) | FT+m

)
= 1. (2.1)

This implies that the increments of S̃n are stationary and independent. Hence(
S̃n

)
n≥0

is a random walk on Z which is independent from FT .
Let us finally prove that this random walk is symmetric.The random vari-

able S̃n+1 − S̃n is valued in the set {−1, 1} and satisfies,

E
(
eiλ(S̃n+1−S̃n)

)
= cosλ.

This implies

P
(
S̃n+1 − S̃n = −1

)
= P

(
S̃n+1 − S̃n = 1

)
=

1

2
.

2
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As a corollary of the previous result, we obtain the so-called strong Markov
property that reinforces the Markov property.

Corollary 2.32 (Strong Markov property). Let T be a stopping time for the
random walk (Sn)n≥0 such that P (T < +∞) = 1. For every k ∈ Z

P (ST+1 = k | FT ) = P (ST+1 = k | ST ) .

Proof. Since the sequence of random variables (Sn+T − ST )n≥0 is a symmetric
random walk on Z that is independent from FT , for λ > 0,

E
(
e−λST+1 | FT

)
= (coshλ) e−λST .

Therefore
E
(
e−λST+1 | FT

)
= E

(
e−λST+1 | ST

)
,

and we conclude as in the proof of Proposition 2.30. 2

The next proposition shows that with probability 1, the symmetric random
walk visits each integer of Z. This property is called the recurrence property
of the symmetric random walk. A similar result for the Brownian motion was
proved in Proposition 2.18.

Proposition 2.33 (Recurrence property of the symmetric random walk).

∀ k ∈ Z, ∀ m ∈ N, P (∃ n ≥ m, Sn = k) = 1

Proof. We do not give the simplest or the most direct proof (see for instance
Exercise 2.34 for a simpler argument and Exercise 2.35 for still another proof),
but the following proof has the advantage to provide several useful further
informations on the random walk.

We first show that

P (∀ k ∈ [1, 2n] , Sk 6= 0) = P (S2n = 0) .

We have

P (∀ k ∈ [1, 2n] , Sk 6= 0)
= 2P (∀ k ∈ [1, 2n] , Sk > 0)
= 2

∑n
j=1 P (∀ k ∈ [1, 2n] , Sk > 0 | S2n = 2j)P (S2n = 2j)

= 2
∑n
j=1

j
nP (S2n = 2j)

= 2
∑n
j=1

j
n

1
22n

(
2n
n+ j

)
Now, we have the following binomial identity which may, for instance, be proved
inductively,

n∑
j=1

j

(
2n
n+ j

)
=
n

2

(
2n
n

)
.
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This yields
P (∀ k ∈ [1, 2n] , Sk 6= 0) = P (S2n = 0) .

Since

P (S2n = 0) =
(2n)!

(n!)
2

1

22n
→n→+∞ 0,

we deduce that
P (∃ n > 1, Sn = 0) = 1.

The random variable
Z1 = inf{n > 1, Sn = 0},

is therefore finite. Let us denote

T1 = inf{n ≥ 0, Sn = 1}

and
T−1 = inf{n ≥ 0, Sn = −1}.

It is clear that T1 and T−1 are stopping times for the random walk (Sn)n≥0.
Our goal will be to prove that

P (T1 < +∞) = 1

Thanks to the Markov property, for n ≥ 1, we obtain

P (Z1 ≥ n)
= P (Z1 ≥ n | S1 = 1)P (S1 = 1) + P (Z1 ≥ n | S1 = −1)P (S1 = −1)
= 1

2P (Z1 ≥ n | S1 = 1) + 1
2P (Z1 ≥ n | S1 = −1)

= 1
2P (T1 ≥ n− 1) + 1

2P (T−1 ≥ n− 1)

Now, since we have the following equality in distribution

(Sn)n≥0 = (−Sn)n≥0 ,

it is clear that P (T1 < +∞) = 1 if and only if P (T−1 < +∞) = 1, in which
case the following equality in distribution holds

T1 = T−1.

Thus, from
P (Z1 < +∞) = 1

we deduce that
P (T1 < +∞) = 1.

Now, we may apply the previous result to the random walk (Sn+T1
−1)n≥0.

This gives
P (∃ n > 1, Sn = 2) = 1.
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By a straightforward induction, we obtain

∀k ∈ N,P (∃ n > 1, Sn = k) = 1.

Then, by symmetry we get

∀k ∈ N,P (∃ n > 1, Sn = −k) = 1.

By using this with the random walk (Sn+m−Sm)n≥0, we finally get the expected

∀ k ∈ Z, ∀ m ∈ N, P (∃ n ≥ m, Sn = k) = 1.

2

Exercise 2.34. By using a method similar to the method of Exercise 2.21, give
another proof of the recurrence property of the symmetric random walk.

Exercise 2.35 (Law of iterated logarithm for the random walk).

1. Let (Bt)t≥0 be a one dimensional Brownian motion. Consider the se-
quence of stopping times inductively defined by T0 = 0 and

Tn+1 = inf{t ≥ Tn, |Bt −BTn | = 1}.

Consider then the process (Sn)n≥0 defined by Sn = BTn . Show that
(Sn)n≥0 is a symmetric random walk.

2. Deduce that if (Sn)n≥0 is a symmetric random walk,

P
(

lim inf
n→+∞

Sn√
2n ln lnn

= −1 , lim sup
n→+∞

Sn√
2n ln lnn

= 1

)
= 1.

Let us consider for k ∈ Z, the stopping hitting time

Tk = inf{n ≥ 1, Sn = k}.

A straightforward consequence of the previous proposition is that

P (Tk < +∞) = 1.

This sequence of hitting times (Tk)k≥0 enjoys several nice properties, the
first being that it is itself a random walk.

Proposition 2.36. The sequence (Tk)k≥0 is a random walk on Z.

Proof. For 0 ≤ a < b, we have

Tb = Ta + inf{n ≥ 1, Sn+Ta = b}.

Now, since (Sn+Ta − a)n≥0 is a random walk on Z which is independent from
Ta,we deduce that:
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1. inf{n ≥ 1, Sn+Ta = b} is independent from FTa .

2. The following equality holds in distribution

inf{n ≥ 1, Sn+Ta = b} = Tb−a.

2

The distribution of Tk may explicitly be computed by using the method of
generating series.

Proposition 2.37. For 0 < x < 1, and k ∈ Z,

∑
n=0

xnP(Tk = n) =

(
1−
√

1− x2

x

)k
.

Proof. Let λ > 0. Applying the Doob’s stopping theorem to the martingale(
(coshλ)

−n
e−λSn

)
n≥0

with the stopping time Tk ∧N , N ∈ N, yields

E
(
e−λSN∧Tk−(Tk∧N) ln coshλ

)
= 1.

The dominated convergence theorem implies then:

E
(
e−λk−Tk ln coshλ

)
= 1.

This yields,

E
(
e−(ln coshλ)Tk

)
= eλk.

By denoting

x = e− ln coshλ

we get therefore

E
(
xTk
)

=

(
1−
√

1− x2

x

)k
,

which is the result we want to prove. 2

From the previous generating series, we deduce the following explicit dis-
tribution:



4 Symmetric random walks 55

Corollary 2.38. For k ∈ N, n ∈ N,

P(Tk = n) =
1

2n

∑
I

1

2i1 − 1
...

1

2ik − 1

(
2i1 − 1
i1

)
...

(
2ik − 1
ik

)
,

where

I =

{
(i1, ..., ik) ∈ Nk, i1 + ...+ ik =

n− k
2

}
.

In particular, for n ∈ N,
P(T1 = 2n) = 0

P(T1 = 2n− 1) =
1

2n− 1

(
2n− 1
n

)
1

22n−1
.

Proof. The proof reduces to the computation of the coefficients in the Taylor
expansion of the function

x→

(
1−
√

1− x2

x

)k
.

2

Exercise 2.39. Show that

P(T1 = 2n− 1) ∼n→+∞
C

n3/2
,

where C > 0 is a constant to be computed.

Exercise 2.40. Let

Z0 = 0, Zk+1 = inf{n > Zk, Sn = 0}

Show that:

1. The sequence (Zk)k≥0 is a random walk on Z.

2. For k ≥ 1, the following equality in distribution holds

Zk = k + Tk.

The following proposition is known as the reflection principle for the random
walk.

Proposition 2.41 (Reflection principle). For n ≥ 0, let

Mn = max
0≤k≤n

Sk.

We have for k, n ∈ N,

P (Mn ≥ k, Sn < k) =
1

2
(P (Tk ≤ n)− P (Sn = k)) .
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Proof. Let k, n ∈ N. We first observe the following equality between events,

{Tk ≤ n} = {Mn ≥ k}.

Let us now consider the random walk
(
S̃m

)
m≥0

defined by

S̃m = Sm+Tk − k.

As we have already seen it, this sequence is a symmetric random walk for which
n−Tk ∧n is a stopping time. Now, the following equality holds in distribution

S̃n−Tk∧n = −S̃n−Tk∧n.

Therefore

P
(
Tk ≤ n, S̃n−Tk < 0

)
= P

(
Tk ≤ n, S̃n−Tk > 0

)
,

which may be rewritten

P (Tk ≤ n, Sn < k) = P (Tk ≤ n, Sn > k) .

We finally conclude

2P (Tk ≤ n, Sn < k) + P (Sn = k) = P (Tk ≤ n) ,

which is our claim. 2

As a corollary of the reflection principle, we immediately obtain the follow-
ing expression for the distribution of Mn.

Corollary 2.42. For k, n ∈ N

P (Mn ≥ k) = 2P (Sn ≥ k)− P (Sn = k) .

Exercise 2.43 (Local time of the symmetric random walk). For n ∈ N we
denote

l0n = Card{0 ≤ i ≤ n, Si = 0}.

1. Show that for n ∈ N and k ∈ N∗

P
(
l02n = k

)
= P

(
l02n+1 = k

)
= P (S2n+1−k = k − 1)

2. Deduce that when n→ +∞ the following convergence takes place in dis-
tribution

l0n√
n
→ |N (0, 1)|
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5 Donsker theorem

After this study of the symmetric random walk on Z, we now turn to the
Donsker invariance principle which says that the Brownian motion may con-
structed as a limit of conveniently rescaled random walks. Before stating this
theorem, we need some general results about weak convergence of probability
measures in infinitely dimensional spaces. Let us first recall the definition of
convergence in distribution for a sequence of random variables that are valued
in a Polish space1:

Definition 2.44. A sequence (Xn)n∈N of random variables, valued in a Polish
space E, is said to converge in distribution toward a random variable X if for
every continuous and bounded function f : E → R, we have:

E(f(Xn))→n→+∞ E(f(X)).

Equivalently, the sequence of the distributions of the Xn’s is said to weakly
converge to the distribution of X.

You may observe that the random variables Xn do not need to be defined on
the same probability space. A usual strategy to show that a sequence (Xn)n∈N
converges in distribution is to prove that :

1. The family (Xn)n∈N is relatively compact in the weak convergence topol-
ogy ;

2. The sequence (Xn)n∈N has a unique cluster point.

Since a stochastic process is nothing else but a random variable that is
valued in C(R≥0,R), we have a notion of convergence in distribution for a
sequence of stochastic processes and, due to the fact that the distribution of
stochastic process is fully described by its finite dimensional distributions, we
can prove the following useful fact:

Proposition 2.45. Let (Xn)n∈N be a sequence of continuous processes and let
X be a continuous process. Let us assume that:

1. The sequence of the distributions of the Xn’s is relatively compact in the
weak convergence topology;

2. For every t1, ..., tk ∈ Rk, the following convergence holds in distribution

(Xn
t1 , ..., X

n
tk

)→n→+∞ (Xt1 , ..., Xtk).

Then, the sequence (Xn)n∈N converges in distribution toward X.

1A Polish space is a complete and separable metric space
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In order to efficiently use the previous proposition, we therefore need to
characterize the relatively compact sequences in the weak convergence topology.
A first ingredient is the Prokhorov theorem .

Theorem 2.46 (Prokhorov theorem). Let P be a family of probability measures
on a Polish space E endowed with its Borel σ-field E. Then, P is a relatively
compact set for the weak convergence of probability measures topology if and
only if the family P is tight, that is for every ε ∈ (0, 1), we can find a compact
set Kε ⊂ E such that for every P ∈ P,

P(Kε) ≥ 1− ε.

The second ingredient is Ascoli theorem that describes the relatively com-
pact sets in C(R≥0,R) for the topology of uniform convergence on compact
sets.

Theorem 2.47 (Ascoli theorem). For N ∈ N, f ∈ C(R≥0,R) and δ > 0, we
denote:

V N (f, δ) = sup{| f(t)− f(s) |, | t− s |≤ δ, s, t ≤ N}.

A set K ⊂ C(R≥0,R) is relatively compact if and only if:

1. The set {f(0), f ∈ K} is bounded;

2. For every N ∈ N,
lim
δ→0

sup
f∈K

V N (f, δ) = 0.

As usual, we denote C(R≥0,R) the space of continuous functions and the
associated Borel σ-field is denoted B(R≥0,R). Also, (πt)t≥0 denotes the coor-
dinate process. Combining Prokhorov and Ascoli’s theorems we obtain:

Proposition 2.48. On the space C(R≥0,R), a sequence of probability measures
(Pn)n∈N is relatively compact in the weak convergence topology if and only if:

1. For every ε > 0, there exist A > 0 and n0 ∈ N such that for every n ≥ n0,

Pn (| π0 |> A) ≤ ε;

2. For every η, ε > 0 and N ∈ N, we may find δ > 0 and n0 ∈ N such that
for n ≥ n0,

Pn (V n(π, δ) > η) ≤ ε.

Proof. Assume that the sequence (Pn)n∈N is relatively compact in the topology
of weak convergence. From Prokhorov’s theorem, this sequence is tight , that
is for ε ∈ (0, 1), we can find a compact set Kε ⊂ C(R+,R), such that for n ∈ N:

Pn(Kε) ≥ 1− ε.
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By writing Kε in the form given by Ascoli’s theorem, it is easily checked that
properties (1) and (2) are satisfied with n0 = 0.

Let us now assume that (1) and (2) are satisfied. First, as a finite sequence is
relatively compact, we may assume that the properties (1) and (2) are fulfilled
with n0 = 0. Also, thanks to Prokhorov’s theorem, we only need to show that
the sequence is tight. Let ε > 0 and N ∈ N. For every k ≥ 1, we can find
AN > 0 and δN,k such that:

sup
n∈N

Pn (| π0 |> AN ) ≤ ε

2N+1

sup
n∈N

Pn
(
V N (π, δN,k) >

1

k

)
≤ ε

2N+k+1

We consider then

Kε =
⋂
N∈N

{
f ∈ C(R+,R), | f(0) |≤ AN , V N (π, δN,k) ≤ 1

k
,∀k ≥ 1

}
.

Ascoli’s theorem implies that Kε is relatively compact, and it is easy to see
that for n ≥ 0,

Pn(Kε) ≥ 1− ε.
2

Exercise 2.49. Let (Xn)n∈N be a sequence of continuous stochastic processes
such that:

1. The family formed by the distributions of the Xn
0 ’s, n ∈ N is tight;

2. There exist α, β, γ > 0 such that for s, t ≥ 0 and n ≥ 0,

E (| Xn
t −Xn

s |α) ≤ β | t− s |1+γ .

Show that the family of the distributions of the Xn’s n ∈ N is relatively compact
in the topology of the weak convergence.

We are now in position to prove the Donsker’s approximation theorem, that
constructs Brownian motion as a limit of symmetric random walks on Z.

Let (Sn)n∈N be a symmetric random walk on Z. We define the sequence
(Snt )t∈[0,1], n ∈ N, as follows:

Snt =
√
n

((
t− k

n

)
Sk+1 +

(
k + 1

n
− t
)
Sk

)
,
k

n
≤ t ≤ k + 1

n
.

The process (Snt )t≥0 is therefore the piecewise affine continuous interpolation
of the rescaled discrete sequence (Sn)n≥0.



60 2 Brownian motion

Theorem 2.50 (Donsker theorem). The sequence of processes (Snt )t∈[0,1], n ∈
N, converges in distribution to a standard Brownian motion (Bt)t∈[0,1].

Proof. We need to check two things:

1. For every t1, ..., tk ∈ [0, 1], the following convergence in distribution takes
place (

Snt1 , ..., S
n
tk

)
→n→+∞ (Bt1 , ..., Btk).

2. The family of the distributions of the (Snt )t∈[0,1], n ∈ N, is relatively
compact in the weak convergence topology.

The first point (1) is let as exercise to the reader: It is basically a consequence
of the multidimensional central limit theorem. Let us however point out that
in order to simplify the computations, it will be easier to prove that for every
t1 ≤ · ≤ tk ∈ [0, 1], the following convergence in distribution takes place(

Snt1 , S
n
t2 − S

n
t1 , ..., S

n
tk
− Sntk−1

)
→n→+∞ (Bt1 , Bt2 −Bt1 ..., Btk −Btk−1

).

So, we turn to the second point (2). Let λ > 0. The process (S4
n)n∈N is a

submartingale, therefore from Doob’s maximal inequality, for n ≥ 1,

P
(

max
k≤n
| Sk |> λ

√
n

)
≤ E(S4

n)

λ4n2
=

3n2 − 2n

λ4n2
≤ 3

λ4
.

Thanks to the stationarity of the increments of (Sn)n∈N, we deduce that for
k, n ≥ 1, λ > 0,

P
(

max
i≤n
| Si+k − Sk |> λ

√
n

)
≤ 3

λ4
.

Let now ε, η ∈ (0, 1). From the previous inequality we can find δ > 0 such that
for every k, n ≥ 1

P
(

max
i≤[nδ]

| Si+k − Sk |≥ ε
√
n

)
≤ ηδ.

Let N, ε, η > 0. From the definition of Sn we deduce that we can find δ ∈ (0, 1)
such that for every n ≥ 1 and t ≤ N ,

P
(

sup
t≤s≤t+δ

| Sns − Snt |≥ η
)
≤ εδ.

For 0 ≤ i < N
δ et n ≥ 1, let

Ani =

{
ω ∈ Ω, sup

iδ≤s≤(i+1)δ∧N
| Sniδ − Sns |≥ η

}
.
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We may check that

∩i cAni ⊂ {sup{| Snt − Sns |, | t− s |≤ δ, s, t ≤ N} < 3η} .

Therefore, for every n ≥ 1,

P (sup{| Snt − Sns |, | t− s |≤ δ, s, t ≤ N} ≥ 3η)

≤P

(⋃
i

Ani

)
≤
(
1 + [Nδ−1]

)
δε

<(N + 1)ε.

This implies the expected relative compactness property thanks to Proposition
2.48. 2

Besides its importance to simulate Brownian motion on a computer for
instance, it is interesting that Donsker’s theorem may also be used to explicitly
compute some distributions of Browian functionals.

Theorem 2.51 (Arcsine law). Let (Bt)t≥0 be a standard Brownian motion.
For t ≥ 0, we denote

At =

∫ t

0

1[0,+∞)(Bs)ds.

We have for x ≤ t:

P(At ≤ x) =
2

π
arcsin

√
x

t
.

Proof. Let (Sn)n∈N be a symmetric random walk on Z. We denote by T1 the
hitting time of 1 by (Sn)n∈N, and

Z1 = inf{n ≥ 1, Sn = 0}.

Exercise 2.40 proved that the following equality in distribution takes place

Z1 = T1 + 1.

Let us denote

An = Card{1 ≤ i ≤ n,max (Si−1, Si) > 0}.

We will prove by induction that for 0 ≤ k ≤ n,

P (A2n = 2k) = P (S2k = 0)P (S2n−2k = 0)

First,

P (A2n = 0) = P (T1 ≥ 2n+ 1) = P (Z1 ≥ 2n+ 2) = P (S1 6= 0, ..., S2n 6= 0) .
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As seen before:
P (S1 6= 0, ..., S2n 6= 0) = P (S2n = 0) .

Thus,
P (A2n = 0) = P (S2n = 0) .

In the same way
P (A2n = 2n) = P (S2n = 0) .

For 1 ≤ k ≤ n− 1,
{A2n = 2k} ⊂ {Z1 ≤ 2k},

thus:

P (A2n = 2k) =

k∑
i=1

P (A2n = 2k | Z1 = 2i)P (Z1 = 2i)

=
1

2

k∑
i=1

P (Z1 = 2i) (P (A2n−2i = 2k) + P (A2n−2i = 2k − 2i)) .

Thanks to the induction assumption at the step n we have,

P (A2n = 2k)

= 1
2

∑k
i=1 P (Z1 = 2i) (P (S2k = 0)P (S2n−2k−2i = 0)

+P (S2k−2i = 0)P (S2n−2k = 0)) .

The Markov property then implies

k∑
i=1

P (Z1 = 2i)P (S2k−2i = 0) =

k∑
i=1

P (Z1 = 2i)P (S2k = 0 | Z1 = 2i)

= P (S2k = 0) .

In the same way, we can prove

k∑
i=1

P (Z1 = 2i)P (S2n−2k−2i = 0) = P (S2n−2k = 0) .

Thus
P (A2n = 2k) = P (S2k = 0)P (S2n−2k = 0)

which completes the induction. As a conclusion, we have for 0 ≤ k ≤ n,

P (A2n = 2k) = P (S2k = 0)P (S2n−2k = 0) =
1

2n
(2n− 2k)!

(n− k)!2
(2k)!

(k)!2
.

The Stirling’s formula
n! ∼n→∞ nne−n

√
2πn,
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implies that for x ∈ [0, 1]:

P
(
A2n

2n
≤ x

)
∼n→+∞

1

π

[nx]∑
k=0

1√
k (n− k)

.

Since ∫ x

0

du

π
√
u (1− u)

=
2

π
arcsin

√
x

we deduce that for x ∈ [0, 1]:

lim
n→+∞

P
(
A2n

2n
≤ x

)
=

2

π
arcsin

√
x.

It is now time to use Donsker’s theorem. We consider the sequence

Snt =
√
n

((
t− k

n

)
Sk+1 +

(
k + 1

n
− t
)
Sk

)
,
k

n
≤ t ≤ k + 1

n
.

It is easy to see that ∫ 1

0

1[0,+∞)(S
n
t )dt =

A2n

2n
.

Donsker’s theorem implies therefore that

P(A1 ≤ x) =
2

π
arcsin

√
x.

The distribution of At is then finally deduced from the distribution of A1 by
using the scaling property of Brownian motion.

2

Exercise 2.52.

1. Let (Sn)n∈N be a symmetric random walk on Z. We denote

An = Card{1 ≤ i ≤ n,max (Si−1, Si) > 0}.

(a) Show that for 0 < x, y < 1

+∞∑
n=0

n∑
k=0

P (A2n = 2k, S2n = 0)x2ky2n =
2√

1− y2 +
√

1− x2y2
.

(b) Deduce that, conditionally to S2n = 0, the random variable A2n is
uniformly distributed on the set {0, 2, 4, ..., 2n} .



64 2 Brownian motion

2. Let (Bt)t≥0 be a standard Brownian motion. By using Donsker’s theorem
show that conditionally to B1 = 0, the random variable∫ 1

0

1[0,+∞)(Bs)ds,

is uniformly distributed on [0, 1].

Exercise 2.53. Let (Bt)t≥0 be a standard Brownian motion. The goal of the
exercise is to compute the distribution of the random variable

g1 = sup{t ∈ [0, 1], Bt = 0}.

1. Let (Sn)n∈N be a symmetric random walk on Z. For n ∈ N, we denote

dn = max{1 ≤ k ≤ n, Sk = 0}.

Show that for 0 ≤ k ≤ n

P (d2n = 2k) = P (S2k = 0)P (S2n−2k = 0) .

2. Deduce that for x ∈ [0, 1]

lim
n→+∞

P
(
dn
n
≤ x

)
=

2

π
arcsin

√
x.

3. Deduce the distribution of g1.

Notes and Comments

There are many rigorous constructions of the Brownian motion. The first one is
due to Wiener [?]. A direct construction of the Wiener measure is given by Itô
in [?]. Many properties of Brownian motions were known from Paul Lévy [?].
For more details about random walks, we refer to Durrett [?], Lawler-Vlada [?]
and the classical reference by Spitzer. For further reading on Donsker theorem
and convergence in distribution in path spaces we refer to Section 6, Chapter
II in [?] or to the book by Jacod and Shiryaev [?].



Chapter 3

Markov processes

In this chapter we study continuous time Markov processes and emphasize the
role played by the transition semigroup, to study sample paths properties of
Markov processes. The class of processes we shall particularly be interested in
are the Feller-Dynkin processes, which are Markov processes admitting regular
versions and enjoying the strong Markov property. We will show that Feller-
Dynkin processes admit generators and that this generator is a second order
differential operator if the process is continuous. We finish the chapter with
the study of the Lévy processes which are Feller-Dynkin processes associated
to convolution semigroups.

1 Markov processes

Intuitively, a stochastic process defined on a probability space (Ω,F ,P) is a
Markov process if it is memoryless, that is if for every bounded and Borel
function f : Rn → R,

E
(
f(Xt+s) | FXs

)
= E (f(Xt+s) | Xs) , s, t ≥ 0.

Let us turn to the more precise definition that relies on the notion of tran-
sition function. A transition function for Markov process is the analogue in
continuous time of the transition matrix associated to a Markov chain.

Definition 3.1. A transition function {Pt, t ≥ 0} on Rn is a family of kernels

Pt : R× B(Rn)→ [0, 1]

such that:

1. For t ≥ 0 and x ∈ Rn, Pt(x, ·) is a probability measure on Rn;

2. For t ≥ 0 and A Borel set in Rn the application x→ Pt(x,A) is measur-
able;

3. For s, t ≥ 0, x ∈ Rn and A Borel set in Rn,

Pt+s(x,A) =

∫
Rn
Pt(y,A)Ps(x, dy). (3.1)

The relation (3.1) is called the Chapman-Kolmogorov relation.
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Given a transition function, we can define a one parameter family of linear
operators (Pt)t≥0 from the space of bounded Borel functions into itself as
follows:

(Ptf)(x) =

∫
R
f(y)Pt(x, dy).

If {Pt, t ≥ 0} is a transition function, then the following properties are
satisfied:

• Pt1 = 1;

• For every t ≥ 0, Pt is a positivity preserving operator, in the sense that
if f is non negative, so is Ptf ;

• For every t ≥ 0, Pt is a contraction from the space of bounded Borel
functions into itself (that is, it is a continuous operator with a norm
smaller than 1);

• The semigroup property holds: For every s, t ≥ 0,

Pt+s = PtPs, s, t ≥ 0.

Definition 3.2. A stochastic process (Xt)t≥0 defined on a probability space
(Ω,F ,P) is called a Markov process if there exists a transition function {Pt, t ≥
0} on Rn such that for every bounded and Borel function f : Rn → R,

E
(
f(Xt+s) | FXs

)
= Ptf(Xs), s, t ≥ 0,

where FX denotes the natural filtration1 of the process (Xt)t≥0. The family
of operators (Pt)t≥0 is called the semigroup of the Markov process.

Remark 3.3. We may also speak of the Markov property with respect to a
given filtration. A stochastic process (Xt)t≥0 defined on a filtered probability
space (Ω,F , (Ft)t≥0,P) is called a Markov process with respect to the filtration
(Ft)t≥0 if there exists a transition function {Pt, t ≥ 0} on Rn such that for every
bounded and Borel function f : Rn → R,

E (f(Xt+s) | Fs) = Ptf(Xs), s, t ≥ 0.

Brownian motion is the primary example of a Markov process.

Proposition 3.4. Let (Bt)t≥0 be a (one-dimensional) stochastic process de-
fined on a probability space (Ω,F ,P) such that B0 = 0 a.s. Then, (Bt)t≥0 is a
standard Brownian motion if and only if it is a Markov process with semigroup:

P0 = Id, (Ptf)(x) =

∫
R
f(y)

e−
(x−y)2

2t

√
2πt

dy, t > 0, x ∈ R.
1Recall that FX

s is the smallest σ-algebra that makes measurable all the random variables
(Xt1 , · · · , Xtm ), 0 ≤ t1 ≤ · · · ≤ tm ≤ s.
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Proof. Let (Bt)t≥0 be a Markov process defined on a probability space (Ω,F ,P)
with semigroup:

P0 = Id, (Ptf)(x) =

∫
R
f(y)

e−
(x−y)2

2t

√
2πt

dy, t > 0, x ∈ R.

Thanks to the Markov property, by denoting Ft the natural filtration of (Bt)t≥0,
we have for s, t ≥ 0, λ ∈ R,

E(eiλBt+s | Fs) =

∫
R
eiλ(Bs+y) e

− y
2

2t

√
2πt

dy.

This implies

E(eiλ(Bt+s−Bs) | Fs) =

∫
R
eiλy

e−
y2

2t

√
2πt

dy = e−
1
2λ

2t.

In particular, the increments of (Bt)t≥0 are stationary and independent. Now,
for λ1, ..., λn ∈ R, 0 < t1 < ... < tn:

E
(
ei
∑n
k=1 λk(Btk+1

−Btk )
)

=

n∏
k=1

E
(
eiλk(Btk+1

−Btk )
)

=

n∏
k=1

E
(
eiλkBtk+1−tk

)
= e−

1
2

∑n
k=1(tk+1−tk)λ2

k .

Hence (Bt)t≥0 is a standard Brownian motion.
Conversely, let (Bt)t≥0 be a standard Brownian motion with natural filtra-

tion Ft. If f is a bounded Borel function and s, t ≥ 0, we have:

E(f(Bt+s) | Fs) = E(f(Bt+s −Bs +Bs) | Fs).

Since Bt+s −Bs is independent from Fs, we deduce that

E(f(Bt+s) | Fs) = E(f(Bt+s) | Bs).

For x ∈ R, we have

E(f(Bt+s) | Bs = x) = E(f(Bt+s −Bs +Bs) | Bs = x) = E(f(Xt + x)),

where Xt is a random variable independent from Bs and normally distributed
with mean 0 and variance t. Therefore we have

E(f(Bt+s) | Bs = x) =

∫
R
f(x+ y)

e−
y2

2t

√
2πt

dy
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and

E(f(Bt+s) | Fs) =

∫
R
f(Bs + y)

e−
y2

2t

√
2πt

dy.

2

Exercise 3.5 (Multidimensional Brownian motion). Let (Bt)t≥0 be a n-dimensional
stochastic process defined on a probability space (Ω,F ,P) such that B0 = 0 a.s.
Show that (Bt)t≥0 is a standard Brownian motion on Rn if and only if it is a
Markov process with semigroup:

P0 = Id, (Ptf)(x) =

∫
Rn
f(y)

e−
‖x−y‖2

2t

(2πt)n/2
dy, t > 0, x ∈ Rn.

Exercise 3.6 (Ornstein-Uhlenbeck process). Let (Bt)t≥0 be a one-dimensional
Brownian motion and let θ ∈ R\{0}. We consider the process

Xt = eθtB 1−e−2θt

2θ

.

Show that (Xt)t≥0 is a Markov process with semigroup

(Ptf)(x) =

∫
R
f

(
eθtx+

√
e2θt − 1

2θ
y

)
e−

y2

2

√
2π

dy.

Exercise 3.7 (Black-Scholes process). Let (Bt)t≥0 be a one-dimensional Brow-
nian motion and let µ ∈ R, σ > 0. We consider the process

Xt = e

(
µ−σ22

)
t+σBt .

Show that (Xt)t≥0 is a Markov process with semigroup

(Ptf)(x) =

∫
R
f

(
xe

(
µ−σ22

)
t+σy

)
e−

y2

2t

√
2πt

dy.

Exercise 3.8 (Bessel process). Let (Bt)t≥0 be a n-dimensional Brownian mo-
tion. We consider

Xt = ‖Bt‖ =

√√√√ n∑
i=1

(Bit)
2.

Show that (Xt)t≥0 is a Markov process with semigroup given by

(Ptf)(x) =
1

t

∫
R≥0

f (y)
(y
x

)n
2−1

In
2−1

(xy
t

)
ye−

x2+y2

2 dy
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for x > 0, and

(Ptf)(0) =
21−n2

Γ(n/2)tn/2

∫
R≥0

f (y) yn−1e−
y2

2t dy,

where Γ is the Euler Gamma function and In
2−1 is the modified Bessel function

of the first kind with index n
2 − 1, that is the solution of Bessel’s equation

y′′ +
1

x
y −

(
1 +

(n
2
− 1
)2 1

x2

)
y = 0,

such that

y(x) ∼x→0
x
n
2−1

2n/2Γ(n/2)
.

The semigroup of the Brownian motion is intimately related to solutions of
the heat equation. The next proposition shows how to construct martingales
from solutions of the backward heat equation.

Theorem 3.9. Let (Bt)t≥0 be a standard Brownian motion. Let f : R≥0×R→
C be such that:

1. f is once continuously differentiable with respect to its first variable and
twice continuously differentiable with respect to its second variable (we
write f ∈ C1,2(R≥0 × R,C)).

2. For t ≥ 0, there exist constants K > 0 and α > 0 such that for every
x ∈ R

sup
0≤s≤t

| f(s, x) |≤ Keα|x|.

The process (f(t, Bt))t≥0 is a martingale if and only if:

∂f

∂t
+

1

2

∂2f

∂x2
= 0.

Proof. Let t > 0. In what follows, we denote by F the natural filtration of the
Brownian motion. Thanks to the Markov property, we have for s < t,

E(f(t, Bt) | Fs) =

∫
R
f(t, y)

e−
(y−Bs)2
2(t−s)√

2π(t− s)
dy

Therefore the process (f(t, Bt))t≥0 is a martingale if and only if for 0 < s < t
and x ∈ R, ∫

R
f(t, y)

e−
(y−x)2
2(t−s)√

2π(t− s)
dy = f(s, x).
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We are thus let to characterize the functions f that satisfy the above functional
equation and the given growth conditions.

So, let f be a function that satisfies the required regularity and growth
conditions and such that for 0 < s < t and x ∈ R,

∫
R
f(t, y)

e−
(y−x)2
2(t−s)√

2π(t− s)
dy = f(s, x).

For a fixed t > 0, the function

g : (s, x)→
∫
R
f(t, y)

e−
(y−x)2
2(t−s)√

2π(t− s)
dy

which is defined on [0, t)× R is easily seen to satisfy the equation

∂g

∂s
+

1

2

∂2g

∂x2
= 0,

so that f , of course, satisfies the same equation.
Now, assume that f is a function that satisfies the required growth condi-

tions and the equation:
∂f

∂t
+

1

2

∂2f

∂x2
= 0.

Let t > 0 be fixed. If we still denote

g : (s, x)→
∫
R
f(t, y)

e−
(y−x)2
2(t−s)√

2π(t− s)
dy,

we quickly realize that h = f − g satisfies

∂h

∂s
+

1

2

∂2h

∂x2
= 0

on [0, t)× R with moreover the boundary condition:

∀x ∈ R, lim
s→t

h(s, x) = 0.

From classical uniqueness of solutions results for the heat equation, we deduce
that h = 0. 2

Exercise 3.10. Let (Bt)t≥0 be a n-dimensional standard Brownian motion.
Let f : R≥0 × Rn → C be such that:

1. f ∈ C1,2(R≥0 × Rn,C).



1 Markov processes 71

2. For t ≥ 0, there exist constants K > 0 and α > 0 such that

sup
0≤s≤t

| f(s, x) |≤ Keα‖x‖.

Show that the process (f(t, Bt))t≥0 is a martingale if and only if:

∂f

∂t
+

1

2
∆f = 0.

In particular, if f is a sub-exponential harmonic function (that is ∆f = 0),
then the process (f(Bt))t≥0 is a martingale.

Exercise 3.11. Let (Xt)t≥0 be a Markov process with semigroup Pt. Show that
if T > 0, the process ((PT−tf)(Xt))0≤t≤T is a martingale. By using Doob’s
stopping theorem, deduce that if S is a stopping time such that S ≤ T almost
surely, then

E(f(XT )|FS) = PT−Sf(XS).

Exercise 3.12 (Self-similar semigroups). A transition function {Pt, t ≥ 0} on
Rn is said to be self-similar with index H > 0 if for every t ≥ 0, c > 0, x ∈ Rn
and every Borel set A ⊂ Rn,

Pt(x,∆cA) = Pt/c

( x

cH
, A
)
,

where ∆c is the dilation of Rn defined by ∆c(y) = cHy.

1. Show that the transition function of the Brownian motion is self-similar
with index H = 1

2 .

2. Show that if (Xt)t≥0 is a Markov process whose transition function is
self-similar with index H > 0 such that X0 = 0, then the two processes
(Xct)t≥0 and (cHXt)t≥0 have the same distribution.

3. Show that a transition function {Pt, t ≥ 0} is self-similar with index
H > 0, if and only if for every t ≥ 0, c > 0 and every bounded and Borel
function function f ,

(Pctf) ◦∆c = Pt(f ◦∆c).

Exercise 3.13 (Rotationally invariant semigroups). A transition function {Pt, t ≥
0} on Rn is said to be rotationally invariant if for every t ≥ 0, M ∈ SO(Rn)
and every Borel set A ⊂ Rn,

Pt(x,M ·A) = Pt
(
M−1x,A

)
,

where SO(Rn) is the set of n×n matrices such that tMM = In and det(M) =
1, and where M ·A is the set {Mx, x ∈ A}.
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1. Show that the transition function of the Brownian motion is rotationally
invariant.

2. Show that if (Xt)t≥0 is a Markov process whose transition function is
rotationally invariant such that X0 = 0, then for every M ∈ SO(Rn) the
two processes (MXt)t≥0 and (Xt)t≥0 have the same distribution.

3. Show that a transition function {Pt, t ≥ 0} is rotationally invariant, if
and only if for every t ≥ 0, M ∈ SO(Rn) and every bounded and Borel
function function f ,

(Ptf) ◦M = Pt(f ◦M).

It is remarkable that given any transition function, it is always possible to
find a corresponding Markov process.

Theorem 3.14. Let {Pt, t ≥ 0} be a transition function on Rn. Let ν be
a probability measure on Rn. There exist a probability space (Ω,F ,P) and a
stochastic process (Xt)t≥0 such that:

1. The distribution of X0 is ν ;

2. If f : Rn → R is a bounded and Borel function

E
(
f(Xt+s) | FXs

)
= (Ptf)(Xs), s, t ≥ 0

where FX is the natural filtration of X.

Proof. For 0 = t0 < t1 < ... < tm, A a Borel set in Rn and B Borel set in
(Rn)⊗m, we define

µt0,t1,...,tm(A×B) =

∫
A

∫
B

Pt1(z, dx1)Pt2−t1(x1, dx2)...Ptm−tm−1
(xm−1, dxn)ν(dz).

The measure µt0,t1,...,tn is therefore a probability measure on Rn × (Rn)⊗m.
Since for a Borel set C in Rn and x ∈ Rn we have

Pt+s(x,C) =

∫
Rn
Pt(y, C)Ps(x, dy),

we deduce that this family of probability satisfies the assumptions of the
Daniell-Kolmogorov theorem. Therefore, we can find a process (Xt)t≥0 de-
fined on some probability space (Ω,F ,P) whose finite dimensional distributions
are given by the µt0,t1,...,tn ’s. Let us now prove that this process satisfies the
property stated in the theorem. First, the distribution of X0 is ν because

µ0(A) =

∫
A

ν(dz) = ν(A), A ∈ B(Rn).
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We now have to prove that if f : Rn → R is a bounded and Borel function and
if 0 < s, t, then

E
(
f(Xs+t) | FXs

)
= (Ptf)(Xs).

For this, we have to prove that if f : Rn → R, F : (Rn)⊗m → R, are bounded
and Borel functions and if 0 = t0 < t1 < ... < tm, then

E
(
f(Xtm)F (Xt0 , ..., Xtm−1)

)
= E

(
(Ptm−tm−1f)(Xtm−1)F (Xt0 , ..., Xtm−1)

)
.

But thanks to Fubini’s theorem, we have

E
(
f(Xtm)F (Xt0 , ..., Xtm−1

)
)

=

∫
(Rn)⊗(m+1)

f(xm)F (z, x1, ..., xm−1)

Pt1(z, dx1)Pt2−t1(x1, dx2) · · ·Ptm−tm−1(xm−1, dxm)ν(dz)

=

∫
Rn

∫
(Rn)⊗m

(Ptm−tm−1f)(xm−1)F (z, x1, ..., xm−1)

Pt1(z, dx1) · · ·Ptm−1−tm−2
(xm−2, dxm−1)ν(dz)

=E
(
(Ptm−tm−1

f)(Xtm−1
)F (Xt0 , ..., Xtm−1

)
)
.

This conclude the proof of the theorem. 2

Remark 3.15. Observe the degree of freedom we have on the distribution
of X0: This reflects the fact that the transition function characterizes the
distribution of a Markov process up to its initial distribution.

To finish the section, we introduce the notion of sub-Markov process, a
notion which is very useful in many situations. A family of operators (Pt)t≥0

from the space of bounded Borel functions into itself is called a sub-Markov
semigroup is the following conditions are satisfied:

• For every t ≥ 0, Pt is a positivity preserving operator;

• For every t ≥ 0, Pt is a contraction from the space of bounded Borel
functions into itself;

• The semigroup property holds: For every s, t ≥ 0,

Pt+s = PtPs, s, t ≥ 0.

Observe that unlike Markov semigroups which are associated with Markov
processes, we do not necessarily have Pt1 = 1 but only Pt1 ≤ 1. It turns
out that a sub-Markov semigroup (Pt)t≥0 can always be embedded into a
Markov semigroup which is defined on a larger space. Indeed let us consider a
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cemetery point ?. If f̃ is a bounded Borel function on Rn, then we extend Ptf
to Rn ∪ {?} → R by defining

Ptf(?) = 0.

Also any smooth and compactly supported function f on Rn is automatically
extended to Rn∪{?} → R by setting f(?) = 0. If f is a bounded Borel function
on Rn ∪ {?} → R, we then define for x ∈ Rn

Qtf(x) = Ptf̃(x) + f(?)(1−Pt1(x)),

where f̃ is the restriction of f to Rn. It is an easy exercise to check that Qt is
now a Markov semigroup on the space of bounded Borel functions Rn∪{?} → R.
By definition, a sub-Markov process (Xt)t≥0 on Rn with transition semigroup
(Pt)t≥0 is a Markov process on Rn∪{?} → R with transition semigroup (Qt)t≥0

. If (Xx
t )t≥0 is a sub-Markov process with transition semigroup (Pt)t≥0 such

that Xx
0 = x and if we define e(x) = inf{t ≥ 0, Xx

t = ?}, then we have for any
bounded and Borel function f on Rn,

Ptf(x) = E
(
f(Xx

t )1t<e(x)

)
,

in particular, observe that we have

Pt1(x) = P(t < e(x)).

The random time e(x) is called the extinction time of (Xx
t )t≥0. Killed Markov

processes are canonical examples of sub-Markov processes.

Exercise 3.16 (Killed Markov process). Let (Xt)t≥0 be a Markov process in
Rn and K ⊂ Rn be a non-empty set. Let TK = inf{t ≥ 0, Xt ∈ K}. Consider
the following process (Yt)t≥0 such that:

Yt =

{
Xt, t ≤ TK
?, t > TK .

Show that (Yt)t≥0 is a sub-Markov process.

Exercise 3.17 (Killing at an exponential time). Let (Xt)t≥0 be a Markov
process in Rn. Let T be an exponential random variable with parameter λ which
is independent from (Xt)t≥0. Consider the following process (Yt)t≥0 such that:

Yt =

{
Xt, t ≤ T
?, t > T.

Show that (Yt)t≥0 is a sub-Markov process and compute its semigroup in terms
of the semigroup of (Xt)t≥0.
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2 Strong Markov processes

In the study of martingales, we already stressed and illustrated that in the
study of stochastic processes, it is often important to know how the process
behaves with respect to the stopping times of the underlying filtration. For
Markov processes, this naturally leads to the notion of strong Markov process.

Definition 3.18. Let (Xt)t≥0 be a Markov process with transition function
{Pt, t ≥ 0}. We say that (Xt)t≥0 is a strong Markov process if for any bounded
Borel function f : R → R, and any finite stopping time S of the filtration
(FXt )t≥0, we have:

E(f(XS+t) | FXS ) = (Ptf)(XS), t > 0.

Remark 3.19. As for the definition of the Markov property, we may of course
define the strong Markov property of a process with respect to a filtration that
does not need to be the natural filtration of the process.

In general, it is not straightforward to prove that a given Markov process
satisfies the strong Markov property and not all Markov processes enjoy the
strong Markov property.

Let us first focus on the Brownian motion case. In that case, as for the
symmetric random walks, the strong Markov property is a consequence of the
following result.

Proposition 3.20. Let (Bt)t≥0 be a standard Brownian motion and let T be
a finite stopping time. The process,

(BT+t −BT )t≥0

is a standard Brownian motion independent from FBT .

Proof. Let T be a finite stopping time of the filtration (FBt )t≥0. We first assume
T bounded. Let us consider the process

B̃t = BT+t −BT , t ≥ 0.

Let λ ∈ R, 0 ≤ s ≤ t. Applying Doob’s stopping theorem to the martingale(
eiλBt+

λ2

2 t
)
t≥0

,

with the stopping times t+ T and s+ T , yields:

E
(
eiλBT+t+

λ2

2 (T+t) | FT+s

)
= eiλBT+s+

λ2

2 (T+s).

Therefore we have

E
(
eiλ(BT+t−BT+s) | FT+s

)
= e−

λ2

2 (t−s).
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The increments of (B̃t)t≥0 are therefore independent and stationary. The con-
clusion thus easily follows. If T is not bounded almost surely, then we can
consider the stopping time T ∧N and from the previous result the finite dimen-
sional distributions (Bt1+T∧N −BT∧N , · · · , Btn+T∧N −BT∧N ) do not depend
on N and are the same as a Brownian motion. We can then let N → +∞ to
conclude. 2

As a corollary, we obtain the strong Markov property of the Brownian
motion:

Corollary 3.21. Let (Bt)t≥0 be a standard Brownian motion. Then (Bt)t≥0

is a strong Markov process.

Proof. Let f : R → R be a bounded and Borel function t ≥ 0 and let S be a
finite stopping time. From the previous proposition, we have:

E(f(Bt+S) | FS) = E(f(Bt+S −BS +BS) | FS).

Since Bt+S −BS is independent from FS , we first deduce that

E(f(Bt+S) | FS) = E(f(Bt+S) | BS).

Now for x ∈ R,

E(f(Bt+S) | BS = x) = E(f(Bt+S −BS +BS) | BS = x) = E(f(Xt + x)),

where Xt is a Gaussian random variable independent from BS which has mean
0 and variance t. Thus,

E(f(Bt+S) | BS = x) =

∫
R
f(x+ y)

e−
y2

2t

√
2πt

dy

and

E(f(Bt+S) | FS) =

∫
R
f(BS + y)

e−
y2

2t

√
2πt

dy.

2

The following exercises show some applications of the strong Markov prop-
erty.

In the following exercises, (Bt)t≥0 is a standard Brownian motion and for
a ∈ R, we denote

Ta = inf{t > 0, Bt = a},

and for t ≥ 0,

St = sup{Bs, s ≤ t}.
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Exercise 3.22 (Reflection principle for the Brownian paths). Let a ∈ R. Show
that the process

B̃t = Bt, t < Ta

= 2a−Bt, t ≥ Ta,

is a Brownian motion.

Exercise 3.23. Show that for t ≥ 0, a ≥ 0, x ≤ a,

P(St ∈ da,Bt ∈ dx) =
2(2a− x)√

2πt3
e−

(2a−x)2
2t dadx.

Exercise 3.24. Show that the two processes (St −Bt)t≥0 and (| Bt |)t≥0 have
the same distribution and that (| Bt |)t≥0 is a strong Markov process whose
semigroup is given by:

(Ptf)(x) =
2√
2πt

∫ +∞

0

e−
x2+y2

2t cosh
(xy
t

)
f(y)dy, t > 0.

Exercise 3.25 (Local time of the Brownian motion).

1. Let ε > 0. We denote U = inf{t ≥ 0, St−Bt > ε}. Show that the random
variable SU has an exponential distribution.

2. We recursively define the following sequence of stopping times:

T ′1(ε) = 0, Tn(ε) = inf{t > T ′n(ε), St −Bt > ε},

T ′n+1(ε) = inf{t > Tn(ε), St −Bt = 0}.

We denote

U(t, ε) = max{n, Tn(ε) ≤ t}.

Show that, almost surely,

lim
n→+∞

2−nU(t, 2−n) = St.

3. Deduce that there exists a continuous and non-decreasing process (Lt)t≥0

such that (| Bt | −Lt)t≥0 is a Brownian motion. Show that the process
(Lt)t≥0 increases only when Bt = 0. The process (Lt)t≥0 is called the
local time of Brownian motion at 0.

4. Compute the distribution of Lt.
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3 Feller-Dynkin diffusions

From their very definition, Markov processes are associated to semigroups.
More precisely, a multi-dimensional stochastic process (Xt)t≥0 is a Markov
process if and only if there exists a contraction semigroup of operators (Pt)t≥0

on the Banach space L∞(Rn,R) such that:

• For 0 ≤ f ≤ 1, 0 ≤ Ptf ≤ 1;

• Pt1 = 1;

and
E
(
f(Xt+s) | FXs

)
= Ptf(Xs), s, t ≥ 0.

In general for an arbitrary f ∈ L∞(Rn,R), the map t → Ptf fails to be
continuous in the strong topology. However, for many interesting examples
of Markov processes, this continuity issue is solved by restricting (Pt)t≥0 to
a closed subspace X of L∞(Rn,R) that densely contains the set Cc(Rn,R) of
smooth and compactly supported functions Rn → R. In what follows, we
denote by C0(Rn,R) the Banach space of continuous functions f : Rn → R
such that lim‖x‖→+∞ f(x) = 0.

Exercise 3.26. Let

(Ptf)(x) =

∫
R
f(y)

e−
(x−y)2

2t

√
2πt

dy, t > 0, x ∈ R,

be the semigroup of the Brownian motion.

1. Give an example of f ∈ L∞(R,R) such that the map t→ Ptf fails to be
continuous in the strong topology.

2. Show that ∀f ∈ C0(R,R)

lim
t→0
‖Ptf − f‖∞ = 0.

The previous exercise leads to the following definitions.

Definition 3.27 (Feller-Dynkin semigroups).

• Let (Pt)t≥0 be a contraction semigroup of operators on the Banach space
L∞(Rn,R) such that:

1. For 0 ≤ f ≤ 1, 0 ≤ Ptf ≤ 1;

2. Pt1 = 1.

We say that (Pt)t≥0 is a Feller-Dynkin semigroup if it satisfies the fol-
lowing additional properties:
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1. Pt : C0(Rn,R)→ C0(Rn,R);

2. ∀f ∈ C0(Rn,R)
lim
t→0
‖Ptf − f‖∞ = 0.

• A Markov process (Xt)t≥0 is said to be a Feller-Dynkin process if its
semigroup is a Feller-Dynkin semigroup.

We know from Theorem 3.14 that it is always possible to associate a Markov
process to a transition function. For Feller-Dynkin semigroups, we can more-
over work with regular versions that enjoy the strong Markov property.

Theorem 3.28. Let {Pt, t ≥ 0} be a Feller-Dynkin transition function. For
every probability measure ν on Rn, there exist a filtered probability space and a
stochastic process (Xt)t≥0 defined on that space such that:

1. The distribution of X0 is ν;

2. The paths of (Xt)t≥0 are right continuous and left limited;

3. With respect to the filtration (Ft)t≥0, (Xt)t≥0 is a strong Markov process
with transition function {Pt, t ≥ 0}.

Proof. Let {Pt, t ≥ 0} be a Feller-Dynkin transition function. We denote by
Pt the corresponding semigroup. We already know from the Theorem 3.14
that there exist a filtered probability space (Ω, (Ft)t≥0,F ,P) and a stochastic
process (Xt)t≥0 defined on that space such that:

1. The distribution of X0 is ν;

2. With respect to the filtration (Ft)t≥0, (Xt)t≥0 is a Markov process with
transition function {Pt, t ≥ 0}.

So, we need to prove that (Xt)t≥0 admits a right continuous and left limited
modification. The idea is to use the so called resolvent functions of the semi-
group. For α > 0 and f ∈ C0(Rn,R), consider

Uαf(x) =

∫ +∞

0

e−αtPtf(x)dt.

If f ≥ 0, we have for t ≥ s,

E
(
e−αtUαf(Xt) | Fs

)
= e−αtPt−sUαf(Xs)

= e−αt
∫ +∞

0

e−αuPt−s+uf(Xs)du

= e−αs
∫ +∞

t−s
e−αuPuf(Xs)du

≤ e−αsUαf(Xs).
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Therefore, if f ≥ 0, then e−αtUαf(Xt) is a supermartingale. From the Doob’s
regularization theorem (Theorem 1.47), we deduce that for every α > 0, and
every f ∈ C0(Rn,R), f ≥ 0, the process Uαf(Xt) has almost surely right limits
along Q. Let now I be a countable set of non negative functions in C0(Rn,R)
that separate the points in the sense that for x, y ∈ Rn with x 6= y, we always
can find f ∈ I such that f(x) 6= f(y). Since, it is easily proved that for
f ∈ C0(Rn,R), we always have

lim
α→∞

‖αUαf − f‖∞ = 0,

we deduce that the countable set

A = {Uαf, α ∈ N, f ∈ I}

also separate points. Since for every a ∈ A, the process a(Xt) has almost surely
right limits along Q, we conclude that the process Xt itself has almost surely
right limits along Q. This allows to define

X̃t = lim
s↘t,s∈Q

Xs.

For every bounded functions g, f on Rn and every 0 ≤ t ≤ s, we have

E (g(Xt)f(Xs)) = (g(Xt)Pt−sf(Xt)) .

Therefore, by letting s↘ t, s ∈ Q, we deduce

E
(
g(Xt)f(X̃t)

)
= (g(Xt)f(Xt)) .

Since the previous equality should hold for every bounded functions f and g,
we deduce easily by the monotone class theorem that for every t ≥ 0, X̃t = Xt

almost surely. As a conclusion (X̃t)t≥0 is a right-continuous modification of
(Xt)t≥0. Finally, by using once again the Doob’s regularization theorem for

the supermartingales (a(X̃t))t≥0, a ∈ A, we conclude that (X̃t)t≥0 almost
surely has left limits at any points.

Let us now prove that (X̃t)t≥0 is a strong Markov process. We need to
check that for any Borel function f : R→ R, and any finite stopping time S of
the filtration (Ft)t≥0, we have:

E(f(X̃S+t) | FS) = (Ptf)(X̃S), t > 0.

Without loss of generality we may assume S to be bounded (otherwise, just
consider Sn = S ∧ n and let n→∞).

As a first step, let us assume that S takes a finite number of values s1, · · · , sn.
Let Z be a bounded random variable measurable with respect to FS . We ob-
serve that the random variable 1{S=sk}Z is measurable with respect to Fsk and



3 Feller-Dynkin diffusions 81

deduce that

E(f(X̃S+t)Z) =

n∑
k=1

E
(
f(X̃sk+t)Z1{S=sk}

)
=

n∑
k=1

E
(

(Ptf)(X̃sk)Z1{S=sk}

)
= E

(
(Ptf)(X̃S)Z

)
.

This yields
E(f(X̃S+t) | FS) = (Ptf)(X̃S), t > 0.

If S takes an infinite number of values, we approximate S by the following
sequence of stopping times:

τn =

2n∑
k=1

kK

2n
1{ (k−1)K

2n ≤S< kK
2n },

where K is such that S ≤ K almost surely. The stopping time τn takes its
values in a finite set and when n→ +∞, τn ↘ S. As before, let Z be a bounded
random variable measurable with respect to FS and let f ∈ C0(Rn,R). Since
τn ≥ S, we have from the above computation

E(f(X̃τn+t)Z) = E
(

(Ptf)(X̃τn)Z
)
.

Since Pt is a Feller semigroup, Ptf is a bounded continuous function. By
letting n→ +∞ and using the right continuity of (X̃t)t≥0 in combination with
the dominated convergence we deduce that

E(f(X̃S+t)Z) = E
(

(Ptf)(X̃S)Z
)
.

By using the monotone class theorem, we see that the previous equality then
also holds for every bounded function f . This concludes the proof of the theo-
rem. 2

The Markov process of the previous theorem may not be continuous. Ac-
tually, many interesting examples of Feller-Dynkin process are discontinuous.
This is for instance the case of the Lévy processes that will be later studied.

Exercise 3.29. (Quasi-left continuity) Let (Xt)t≥0 be the Feller-Dynkin Markov
process constructed in Theorem 3.28.

1. Let T be a stopping time of the natural filtration of (Xt)t≥0. Show that if
Tn is an increasing sequence of stopping times almost surely converging
to T , then almost surely on the set {T < +∞}, we have

lim
n→+∞

XTn = XT .
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2. Deduce that for any T ≥ 0, the set {Xt(ω), 0 ≤ t ≤ T} is almost surely
bounded.

The following proposition gives a useful criterion for the continuity of the
Markov process which is associated to a Feller-Dynkin transition function.

Proposition 3.30. For x ∈ Rn and ε > 0, we denote by B(x, ε) the open ball
in Rn with center x and radius ε. Let {Pt, t ≥ 0} be a Feller-Dynkin transition
function that satisfies the condition

lim
t→0

sup
x∈K

1

t
Pt(x,

c B(x, ε)) = 0,

for every ε > 0 and every compact set K. The stochastic process (Xt)t≥0 given
by Theorem 3.28 is then continuous.

Proof. If K is a compact set, n ∈ N, n ≥ 1 and ε > 0, we define

A(n,K, ε) =

{
ω, max

0≤k≤n−1

∥∥∥X k+1
n

(ω)−X k
n

(ω)
∥∥∥ > ε,∀s ∈ [0, 1], Xs(ω) ∈ K

}
.

By using the Markov property, it is easily checked that

P (A(n,K, ε)) ≤ n sup
x∈K

P1/n(x,c B(x, ε)).

As a consequence, if

lim
t→0

sup
x∈K

1

t
Pt(x,

c B(x, ε)) = 0,

we have
lim
n→∞

P (A(n,K, ε)) = 0.

Since from Exercise 3.29 the set {Xt(ω), 0 ≤ t ≤ 1} is almost surely bounded
and thus contained in a compact set, we deduce from the Borel-Cantelli lemma
that with probability 1, the set of n’s such that

max
0≤k≤n−1

∥∥∥X k+1
n

(ω)−X k
n

(ω)
∥∥∥ > ε,

is finite. This implies that (Xt)0≤t≤1 is continuous. 2

A fundamental property of Feller-Dynkin semigroups is that they admit
generators.

Proposition 3.31. Let (Pt)t≥0 be a Feller-Dynkin semigroup. There exists a
densely defined operator

L : D(L) ⊂ C0(Rn,R)→ C0(Rn,R)
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where

D(L) =

{
f ∈ C0(Rn,R), lim

t→0

Ptf − f
t

exists

}
,

such that for f ∈ D(L),

lim
t→0

∥∥∥∥Ptf − f
t

− Lf
∥∥∥∥
∞

= 0.

The operator L is called the generator of the semigroup (Pt)t≥0. We also say
that L generates (Pt)t≥0.

Proof. Let us consider the following bounded operators on C0(Rn,R) :

At =
1

t

∫ t

0

Psds.

For f ∈ C0(Rn,R) and h > 0, we have

1

t
(PtAhf −Ahf) =

1

ht

∫ h

0

(Ps+tf −Psf)ds

=
1

ht

∫ t

0

(Ps+hf −Psf)ds.

Therefore, we obtain

lim
t→0

1

t
(PtAhf −Ahf) =

1

h
(Phf − f) .

This implies,

{Ahf, f ∈ C0(Rn,R), h > 0} ⊂
{
f ∈ C0(Rn,R), lim

t→0

Ptf − f
t

exists

}
Since limh→0Ahf = f , we deduce that{

f ∈ C0(Rn,R), lim
t→0

Ptf − f
t

exists

}
is dense in C0(Rn,R). We can then consider

Lf = lim
t→0

Ptf − f
t

,

which is of course defined on the domain

D(L) =

{
f ∈ C0(Rn,R), lim

t→0

Ptf − f
t

exists

}
.

2
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If (Xt)t≥0 is a Feller-Dynkin process, the generator of its semigroup is also
called the generator of the Markov process (Xt)t≥0.

Exercise 3.32. Let (Bt)t≥0 be a n-dimensional standard Brownian motion.
Show that (Bt)t≥0 is a Feller-Dynkin process, that the domain of its generator
L contains Cc(Rn,R) and that for f ∈ Cc(Rn,R),

Lf =
1

2
∆f.

An interesting sub-class of Feller-Dynkin processes is the class of Feller-
Dynkin diffusion processes. Let us recall that we denote by C(R≥0,Rn) the
space of continuous functions R≥0 → Rn. As usual (πt)t≥0 will denote the
coordinate process on this path space and :

Gt = σ(πs, 0 ≤ s ≤ t), t ≥ 0, G∞ = σ(πs, s ≥ 0).

Definition 3.33 (Diffusion process).

• Let (Pt)t≥0 be a Feller-Dynkin semigroup. We say that (Pt)t≥0 is a
(Feller-Dynkin) diffusion semigroup, if the domain of its generator con-
tains Cc(Rn,R) and if for every probability measure ν on Rn, there exists
a probability measure Pν on G∞ such that:

1. The distribution of π0 under Pν is ν;

2. On the filtered probability space
(
C(Rn≥0,R), (Gt)t≥0,G∞,Pν

)
, (πt)t≥0

is a Markov process with semigroup (Pt)t≥0.

• A continuous Markov process (Xt)t≥0 is said to be a (Feller-Dynkin)
diffusion process if its semigroup is a Feller-Dynkin diffusion semigroup.

As a consequence of Theorems 3.28 and 3.30, it is immediate that if (Pt)t≥0

is a Feller-Dynkin semigroup such that

lim
t→0

sup
x∈K

1

t
Pt(x,B(x, ε)c) = 0,

for every ε > 0 and every compact set K, then (Pt)t≥0 is a diffusion semigroup.

Exercise 3.34 (Brownian motion with drift). Let (Bt)t≥0 be a Brownian mo-
tion on (Ω, (Ft)t≥0,F ,P). For µ ∈ R, show that the process (Bt + µt)t≥0 is
diffusion process with infinitesimal generator L such that for f ∈ Cc(R,R),

Lf = µ
df

dx
+

1

2

d2f

dx2
.
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Exercise 3.35 (Ornstein-Uhlenbeck process). Let (Bt)t≥0 be a Brownian mo-
tion on (Ω, (Ft)t≥0,F ,P). Let θ ∈ R\{0} and consider the process

Xt = eθtB 1−e−2θt

2θ

.

Show that (Xt)t≥0 is a diffusion with infinitesimal generator L such that for
f ∈ Cc(R,R),

Lf = θx
df

dx
+

1

2

d2f

dx2
.

Diffusion processes admits canonical martingales.

Proposition 3.36. Let (Xt)t≥0 be a diffusion process defined on the probability
space (Ω, (Ft)t≥0,F ,P). Let us denote by {Pt, t ≥ 0} its transition function and
by L its generator. For f ∈ Cc(Rn,R), the process(

f(Xt)−
∫ t

0

(Lf)(Xs)ds

)
t≥0

is a martingale with respect to the filtration (Ft)t≥0.

Proof. For f ∈ Cc(Rn,R) and t ≥ 0, we have

lim
ε→0

Pt+εf −Ptf

ε
= Pt

(
lim
ε→0

Pεf − f
ε

)
= PtLf.

Thus, we get

Ptf = f +

∫ t

0

PuLfdu.

This yields:

E (f(Xt) | Fs) = (Pt−sf)(Xs)

= f(Xs) +

∫ t−s

0

(PuLf)(Xs)du

= f(Xs) +

∫ t

s

(Pu−sLf)(Xs)du

= f(Xs) +

∫ t

s

E ((Lf)(Xu) | Fs)

= f(Xs) + E
(∫ t

s

(Lf)(Xu)du | Fs
)
.

2

The following very nice theorem which is due to Dynkin states that infinites-
imal generators of diffusion semigroups need to be second order differential
operators.
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Theorem 3.37 (Dynkin theorem). Let (Xt)t≥0 be a n-dimensional diffusion
process with generator L. There exist continuous functions b : Rn → R and
aij : Rn → R, such that the matrix (aij(x))1≤i,j≤n is semidefinite non negative
and such that for f ∈ Cc(Rn,R):

Lf =

n∑
i=1

bi(x)
∂f

∂xi
+

1

2

n∑
i,j=1

aij(x)
∂2f

∂xi∂xj
.

Proof. We make the proof in dimension n = 1 and let the reader extend it
as an exercise in higher dimension. Let (Xt)t≥0 be a one-dimensional diffu-
sion process with generator L which is defined on a filtered probability space
(Ω, (Ft)t≥0,F ,P). Our strategy will be to prove that L needs to satisfy the
following three properties

1. L : Cc(R,R)→ C0(R,R) is a linear operator;

2. L is a local operator, i.e. if f, g ∈ Cc(R,R) agree on a neighborhood of
x ∈ R, then (Lf)(x) = (Lg)(x);

3. L satisfies the positive maximum principle: If f ∈ Cc(R,R) attains a
maximum at x ∈ R with f(x) ≥ 0, then (Lf)(x) ≤ 0.

Then we will show that the only operators that satisfy the three above prop-
erties are second order differential operators.

The linearity of L is obvious so let us focus on the local property of L.
Let f, g ∈ Cc(R,R) that agree on a neighborhood of x ∈ R. We have

(Ptf)(x) = Ex(f(πt)),

where Ex is the expectation under the probability measure Px such that:

• Under Px, the distribution of π0 is the Dirac mass at x;

• On the probability space (C(R≥0,R), (Gt)t≥0,G∞,Pν), (πt)t≥0 is a Markov
process with transition function {Pt, t ≥ 0}.

We also have,
(Ptg)(x) = Ex(g(πt)).

Since (πt)t≥0 is a continuous process, we deduce that there is a positive and
finite, Px almost surely, stopping time T , such that

f(πt) = g(πt), t < T.

This implies

lim
t→0

Ex(f(πt))− Ex(g(πt))

t
= lim
t→0

Ex(f(1t<Tπt))− Ex(g(1t<Tπt))

t
= 0.



3 Feller-Dynkin diffusions 87

On the other hand, we have

lim
t→0

Ex(f(πt))− Ex(g(πt))

t
= (Lf)(x)− (Lg)(x).

We deduce that
(Lf)(x) = (Lg)(x),

so that L is indeed a local operator.
Let us now show that L satisfies the positive maximum principle. Let

f ∈ Cc(R,R) that attains a maximum at x ∈ R with f(x) ≥ 0. As before, let
Px be the probability measure such that:

• Under Px, the distribution of π0 is the Dirac mass at x;

• On the probability space (C(R≥0,R), (Gt)t≥0,G∞,Pν), (πt)t≥0 is a Markov
process with transition function {Pt, t ≥ 0}.

From the previous proposition, under Px, the process(
f(πt)−

∫ t

0

(Lf)(πs)ds

)
t≥0

is a martingale with respect to the filtration (Gt)t≥0. Therefore, for every t ≥ 0,

Ex(f(πt)) = f(x) +

∫ t

0

Ex((Lf)(πu))du.

Since for every t ≥ 0,
Ex(f(πt)) ≤ f(x),

we deduce that
1

t

∫ t

0

Ex((Lf)(πu))du ≤ 0.

Letting t→ 0 yields:
(Lf)(x) ≤ 0.

As a conclusion, L is linear and local operator that satisfies the positive
maximum principle. Let us now show that such operators are second order
differential operators. Let x ∈ R. Let ψ0 be a compactly supported C∞

function such that in a neighborhood of x, ψ0 = 1. Since Pt1 = 1, it is easy to
deduce from the local property of L that:

(Lψ0)(x) = 0.

Let now ψ1 be a compactly supported C∞ function such that in a neighborhood
of x, ψ1(y) = y − x. Let us denote

b(x) = (Lψ1)(x).
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The function ψ2
1 attains a local minimum in x, therefore

(Lψ2
1)(x) ≥ 0,

and we can define σ such that

σ2(x) = (Lψ2
1)(x).

These functions b and σ are well defined and seen to be continuous. Let us now
prove that for every f ∈ Cc(R,R),

(Lf)(x) = b(x)f ′(x) +
1

2
σ(x)2f ′′(x).

Let f ∈ Cc(R,R). From the Taylor expansion formula, we can write in a
neighborhood of x,

f(y) = f(x)ψ0(y) + f ′(x)ψ1(y) +
1

2
f ′′(x)ψ2

1(y) +R(y)ψ3
1(y)

where R is a continuous function.
We therefore have

(Lf)(x) = f(x)(Lψ0)(x) + f ′(x)Lψ1)(x) +
1

2
f ′′(x)(Lψ2

1)(x) + (LRψ3
1)(x).

Since we already know that Lψ0 = 0, it remains to prove that

(LRψ3
1)(x) = 0.

For ε > 0 which is small enough,

y → R(y)ψ3
1(y)− ε(y − x)2

has a local maximum in x, thus

(LRψ3
1)(x) ≤ εσ2(x).

By letting ε→ 0, we get therefore

(LRψ3
1)(x) ≤ 0.

In the very same way, considering the function

y → R(y)ψ3
1(y) + ε(y − x)2,

we obtain that
(LRψ3

1)(x) ≥ 0.

As a consequence we established that

(LRψ3
1)(x) = 0,

which concludes the proof of the theorem. 2
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Exercise 3.38. Let L be the generator of a Feller-Dynkin semigroup. We
assume that Cc(Rn,R) ⊂ D(L). Show that L satisfies the positive maximum
principle: If f ∈ Cc(Rn,R) attains a maximum at x ∈ R with f(x) ≥ 0, then
(Lf)(x) ≤ 0.

According to the previous exercise, if L is the domain of a Feller-Dynkin
process and if Cc(Rn,R) ⊂ D(L), then L satisfies the positive maximum prin-
ciple (see the previous exercise for the definition). Operators satisfying the
positive maximum principle have been classified by Courrège in a theorem gen-
eralizing Dynkin’s and that we mention without proof. The interested reader
will find the proof in the book by Jacob [?].

In the following statement B(Rn) denotes the set of Borel sets on Rn and a
kernel µ on Rn × B(Rn) is a family {µ(x, ·), x ∈ Rn} of Borel measures.

Theorem 3.39 (Courrège theorem). Let (Xt)t≥0 be a Feller-Dynkin process
with generator L. If D(L) contains Cc(Rn,R), then there exist a symmetric
and non negative matrix (σij(x))1≤i,j≤n, functions bi, c : Rn → R, with c ≥ 0
and a kernel µ on Rn × B(Rn) such that for every f ∈ Cc(Rn,R) and x ∈ Rn,

Lf(x) =

n∑
i,j=1

σij(x)
∂2f

∂xi∂xj
+

n∑
i=1

bi(x)
∂f

∂xi
− c(x)f(x)

+

∫
Rn

f(y)− χ(y − x)f(x)−
n∑
j=1

∂f

∂xj
(x)χ(y − x)(yj − xj)

µ(x, dy),

where χ ∈ Cc(Rn,R), 0 ≤ χ ≤ 1, takes the constant value 1 on the ball B(0, 1).
In addition, the functions bj and c are continuous and for every y ∈ Rn, the
function x→

∑
i,j σij(x)yiyj is upper semicontinuous.

4 Lévy processes

Lévy processes form a fundamental class of Feller-Dynkin processes. They are
the Markov processes associated with the so-called convolution semigroups.

In what follows, we consider a filtered probability space (Ω, (Ft)t≥0,F ,P).

Definition 3.40 (Lévy process). Let (Xt)t≥0 be a stochastic process. It is said
that (Xt)t≥0 is a Lévy process on (Ω, (Ft)t≥0,F ,P) if the following conditions
are fulfilled:

1. Almost surely X0 = 0;

2. The paths of (Xt)t≥0 are left limited and right continuous;

3. (Xt)t≥0 is adapted to the filtration (Ft)t≥0;
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4. For every T ≥ 0, the process (Xt+T − XT )t≥0 is independent of the
σ-algebra FT ;

5. For every t, T ≥ 0, Xt+T −XT has the same distribution as Xt.

Remark 3.41. Of course, the notion of Lévy process in Rn is similarly defined.

Exercise 3.42. Show that if (Xt)t≥0 is a Lévy process defined on (Ω, (Ft)t≥0,F ,P),
then it is also a Lévy process on the space (Ω, (FXt )t≥0,F ,P), where (FXt )t≥0

is the natural filtration of (Xt)t≥0

The two following exercises provide fundamental examples of Lévy pro-
cesses.

Exercise 3.43. (Brownian motion) Let (Bt)t≥0 be a standard Brownian mo-
tion. Show that it is a Lévy process with respect to its natural filtration.

Exercise 3.44 (Compound Poisson process). Let (Tn)n∈N be an i.i.d. sequence
of exponential random variables with parameter λ:

P(Tn ∈ dt) = λe−λtdt, t ≥ 0, n ∈ N,

defined on a probability space (Ω,F ,P). We denote

Sn =

n∑
i=1

Ti, n ≥ 1,

and S0 = 0. For t ≥ 0, let

Nt = max{n ≥ 0, Sn ≤ t}.

1. Show that the process (Nt)t≥0 is a Lévy process on the space (Ω, (FNt )t≥0,F ,P),
where (FNt )t≥0 is the natural filtration of (Nt)t≥0.

2. Show that for t ≥ 0, the random variable Nt is distributed as a Poisson
random variable with parameter λt, that is:

P(Nt = n) = e−λt
(λt)n

n!
, n ∈ N.

The process (Nt)t≥0 is called a Poisson process with intensity λ > 0.

3. Let now (Yn)n≥0 be an i.i.d. sequence of random variables with distribu-
tion µ and independent from (Nt)t≥0 . We define for t ≥ 0,

Xt = 1Nt≥1

(
Nt∑
i=1

Yi

)
.

Show that the process (Xt)t≥0 is a Lévy process on the space (Ω, (FNt )t≥0,F ,P),
where (FXt )t≥0 is the natural filtration of (Xt)t≥0.



4 Lévy processes 91

4. Show that for θ ∈ R and t ≥ 0:

E(eiθXt) = exp

(
tλ

∫
R

(eiθx − 1)µ(dx)

)
.

The process (Xt)t≥0 is called a compound Poisson process.

In the study of Lévy processes, one of the most important tools is the Lévy-
Khinchin theorem that we remind below. We first recall the following basic
definition.

Definition 3.45. A random variable X is said to be infinitely divisible if for
every n ≥ 1, we may find independent and identically distributed random
variables X1, ..., Xn such that in distribution

X1 + ...+Xn =law X.

The Lévy-Khinchin theorem, which is admitted here, completely character-
izes infinitely divisible random variables in terms of their characteristic func-
tion. A proof using Lévy processes may be found in the book by Applebaum
[?].

Theorem 3.46 (Lévy-Khinchin theorem). Let X be an infinitely divisible ran-
dom variable. There exist µ ∈ R, σ > 0 and a Borel measure ν on R\{0} such
that ∫

R
(1 ∧ x2)ν(dx) < +∞,

∀λ ∈ R, E(eiλX) = exp

(
iλµ− 1

2
σ2λ2 +

∫
R

(eiλx − 1− iλx1|x|≤1)ν(dx)

)
.

Conversely, let µ ∈ R, σ > 0 and ν be a Borel measure on R\{0} such that∫
R

(1 ∧ x2)ν(dx) < +∞.

The function:

λ→ exp

(
iλµ− 1

2
σ2λ2 +

∫
R

(eiλx − 1− iλx1|x|≤1)ν(dx)

)
is the characteristic function of the distribution of an infinitely divisible random
variable.

In what follows, we consider a Lévy process (Xt)t≥0. Since for every n ≥ 1,

X1 =

n∑
k=1

(X k
n
−X k−1

n
),
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and since the increments X k
n
− X k−1

n
are independent and identically dis-

tributed, we deduce that the random variable X1 is infinitely divisible. There-
fore, from the Lévy-Khinchin theorem, there exist σ > 0, µ ∈ R and a Borel
measure ν on R\{0} such that:∫

R
(1 ∧ x2)ν(dx) < +∞

and
E(eiλX1) = eψ(λ), λ ∈ R,

where

ψ(λ) = iµλ− 1

2
σ2λ2 +

∫
R

(eiλx − 1− iλx1|x|≤1)ν(dx).

The function ψ is called the characteristic exponent of the Lévy process, and
the measure ν the Lévy measure. For instance, for a Brownian motion, we have

µ = 0, σ = 1, ν = 0,

whereas for a compound Poisson process as defined in Exercise 3.44,

µ = −
∫ 1

−1

xµ(dx), σ = 0, ν(dx) = µ(dx).

The characteristic exponent of a Lévy process characterizes the law of such a
process. Indeed, let λ ∈ R and let us consider the following function:

f(t) = E(eiλXt), t ≥ 0.

Since (Xt)t≥0 is a Lévy process, for s, t ≥ 0,

f(t+ s) = E(eiλXt+s)

= E(eiλ(Xt+s−Xt)+Xt)

= E(eiλ(Xt+s−Xt))E(eiλXt)

= E(eiλXs)E(eiλXt)

= f(t)f(s).

Moreover, since (Xt)t≥0 has right continuous paths at 0, the function f is itself
right continuous at 0. From f(1) = eψ(λ), we may then deduce that for t ≥ 0,

f(t) = etψ(λ), t ≥ 0.

We finally conclude that for λ ∈ R and t ≥ 0,

E(eiλXt) = etψ(λ). (3.2)

With this in hands we can now turn to the Feller-Dynkin property of Lévy
processes and also characterize the Lévy processes as being the Markov proceses
associated to the convolution semigroups.



4 Lévy processes 93

Proposition 3.47. Let (Xt)t≥0 be a Lévy process. For t ≥ 0, let pt(dx) be the
distribution of the random variable Xt. The family (pt(dx))t≥0 is a convolution
semigroup of probability measures, that is

pt+s = pt ∗ ps, s, t ≥ 0.

Moreover the process (Xt)t≥0 is a Feller-Dynkin process with semigroup

Ptf(x) =

∫
R
f(x+ y)pt(dy).

Conversely, let (pt(dx))t≥0 be a convolution semigroup of probability measures
that is right continuous at 0 in the topology of convergence in distribution with
p0(dx) = δ0 (Dirac distribution at 0). Then, there exists a filtered probability
space (Ω,F , (Ft)t≥0,P) and a Lévy process (Xt)t≥0 on it such that the distri-
bution of Xt is pt(dx).

Proof. The family (pt(dx))t≥0 is seen to be a convolution semigroup of prob-
ability measures from (3.47), by taking inverse Fourier transform. From this
last property, we deduce that the family of operators (Pt)t≥0 defined by

Ptf(x) =

∫
R
f(x+ y)pt(dy)

enjoys the semigroup property. Finally due to the fact that pt(dx) is a proba-
bility measure, it is easily checked that (Pt)t≥0 is a Feller-Dynkin semigroup.

Let us now prove that it is the semigroup corresponding to the process
(Xt)t≥0. Let f be a bounded and Borel function, we have for s, t ≥ 0,

E (f(Xt+s) | Fs) = E (f((Xt+s −Xs) +Xs) | Fs) .

But the random variable Xt+s−Xs is independent from Fs and distributed as
pt(dx), therefore

E (f(Xt+s) | Fs) =

∫
R
f(y +Xs)pt(dy) = Ptf(Xs).

We now turn to the proof of the second part of the proposition. As above, the
family of operators (Pt)t≥0 defined by

Ptf(x) =

∫
R
f(x+ y)pt(dy).

defines a Feller-Dynkin semigroup. From Theorem 3.28, there exists a proba-
bility space (Ω,F ,P) and a stochastic process (Xt)t≥0 such that:

• The distribution of X0 is δ0;
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• (Xt)t≥0 is a Markov process with transition function {Pt, t ≥ 0}.

• The paths of (Xt)t≥0 are right continuous and left-limited.

Let us check that this process (Xt)t≥0 is a Lévy process with respect to its
natural filtration. Let λ ∈ R and s, t ≥ 0, we have

E
(
eiλ(Xt+s−Xs) | FXs

)
= e−iλXsE

(
eiλXt+s | FXs

)
= e−iλXs

∫
R
eiλ(Xs+y)pt(dy)

=

∫
R
eiλypt(dy).

We deduce therefore that if f is a bounded and Borel function, then

E
(
f(Xt+s −Xs) | FXs

)
= Ptf(0).

We conclude that, as expected, the process (Xt)t≥0 is a Lévy process. 2

Since Lévy processes are Feller-Dynkin processes, according to Proposition
3.31, they have an infinitesimal generator. The next proposition computes the
generator in terms of the Lévy measure.

Proposition 3.48. Let (Xt)t≥0 be a Lévy process with characteristic exponent

ψ(λ) = iµλ− 1

2
σ2λ2 +

∫
R

(eiλx − 1− iλx1|x|≤1)ν(dx).

The domain D(L) of the infinitesimal generator L of (Xt)t≥0 contains the space
S of smooth and rapidly decreasing functions and for f ∈ S,

Lf(x) = µf ′(x) +
1

2
σ2f ′′(x) +

∫
R
(f(x+ y)− f(x)− yf ′(x)1|y|≤1)ν(dy).

Proof. Let λ ∈ R and denote

eλ(x) = eiλx.

We have

Pteλ(x) =

∫
R
eiλ(x+y)pt(dy) = eλ(x)etψ(λ).

Therefore, we obtain

lim
t→0

Pteλ − eλ
t

= ψ(λ)eλ.

This last equality proves the proposition by using the inverse Fourier transform
that maps S into itself . 2
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Exercise 3.49. Let (Xt)t≥0 be a Lévy process in Rn. Show that (Xt)t≥0 is a
Feller-Dynkin process whose generator can be written on the space of rapidly
decreasing functions

Lf(x) =〈µ,∇f(x)〉+
1

2

n∑
i,j=1

aij
∂2f

∂xi∂xj
(x)

+

∫
Rn

(f(x+ y)− f(x)− 〈y,∇f(x)〉1‖y‖≤1)ν(dy),

where µ ∈ Rn, (aij)0≤i,j≤n is a non negative symmetric matrix and ν is a Borel
measure on Rn − {0}.

An important class of Lévy processes is the class of subordinators.

Definition 3.50 (Subordinators). A non-negative Lévy process (St)t≥0 is
called a subordinator.

For instance the Poisson process (see Exercise 3.44) is a subordinator. Since
for Lévy processes the following identity in distribution holds: St − Ss =law

St−s, t ≥ s, we deduce that the paths t → St of a subordinator are almost
surely non decreasing. If (St)t≥0 is a subordinator, then there exists a function
Ψ : R≥0 → R≥0 such that for every t, λ ≥ 0,

E(e−λSt) = e−tΨ(λ). (3.3)

Actually, we have Ψ(λ) = ψ(iλ), where ψ is the analytic extension of the
characteristic exponent of (St)t≥0 on the upper half plane of the complex plane.
From the representation (3.3), we can see that Ψ needs to be a Bernstein
function, that is for every λ > 0 and k ≥ 1,

(−1)kΨ(k)(λ) ≤ 0.

Berstein functions are characterized by the following well-know theorem of
Bernstein (see [?] for a proof).

Theorem 3.51 (Bernstein theorem). A smooth function f : (0,+∞) → R≥0

is completely monotone, that is for every λ > 0 and k ≥ 0,

(−1)kf (k)(λ) ≥ 0,

if and only if there exists a non negative Borel measure m on [0,+∞) such that

f(λ) =

∫ +∞

0

e−λzm(dz), λ > 0.
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As consequence of the Bernstein theorem, any Berstein function Ψ such
that Ψ(0) = 0 can be written as

Ψ(λ) = aλ+

∫ +∞

0

(1− e−λz)µ(dz),

where a ≥ 0 and where µ is a Borel measure on (0,+∞) such that∫ +∞

0

(1 ∧ z)µ(dz) < +∞.

.
Conversely, given any Bernstein function Ψ, we can find a corresponding

subordinator (St)t≥0. Indeed, let Ψ be a Bernstein function such that Ψ(0) = 0,
then for every t > 0, the function λ→ e−tΨ(λ) is completely monotone and, as
a consequence of the Bernstein theorem, we can find a probability measure mt

on such that ∫ +∞

0

e−λzmt(dz) = e−tΨ(λ).

It is then seen that (mt)t≥0 is a convolution semigroup of probability measure.
As a consequence of Proposition 3.47 we can thus find a Lévy process asso-
ciated to mt. Since mt is supported on [0,+∞), this process needs to be a
subordinator. As a conclusion, there is a one to one correspondence between
subordinators and Bernstein functions.

Exercise 3.52 (α-stable subordinators). Let 0 < α < 1.

1. Show that Ψα(λ) = λα is a Bernstein function.

2. A subordinator (Sαt )t≥0 associated to the Bernstein function Ψα is called
an α-stable subordinator. Show that for c > 0, the processes (Sαct)t≥0 and
(cαSαt )t≥0 have the same distribution.

3. Show the subordination identity:

e−y|α| =
y

2
√
π

∫ +∞

0

e−
y2

4t −tα
2

t3/2
dt, y > 0, α ∈ R,

and deduce the distribution of S
1/2
t , t > 0. We mention that there is no

such simple expression for the distribution of Sαt , α 6= 1/2.

Exercise 3.53 (Subordinated Brownian motion). Let (Bt)t≥0 be a standard
Brownian motion in Rn and let (St)t≥0 be an independent subordinator. The
process

Xt = BSt , t ≥ 0,

is called a subordinated Brownian motion.
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1. Show that (Xt)t≥0 is a Lévy process with characteristic exponent Ψ
(
‖λ‖2

2

)
,

where Ψ is the Bernstein function of the subordinator.

2. Let L be the generator of (Xt)t≥0. Compute the Fourier transform of Lf
in terms of the Fourier transform of f when f is a smooth and rapidly
decreasing function.

3. Let mt be the probability distribution of St at time t > 0 show that the
distribution of Xt has a density which is given by

∫ +∞

0

e−
‖x‖2
2s

(2πs)n/2
mt(ds)

if the integral is convergent. Compute this density if (St)t≥0 is a 1/2-
stable subordinator (see Exercise 3.52).

The following theorem which finishes the section characterizes the continu-
ous Lévy processes. It is remarkable that the only such Lévy processes are, up
to a renormalization factor, the Brownian motions with drift.

Theorem 3.54 (Lévy theorem). Let (Xt)t≥0 be a continuous Lévy process
defined on (Ω, (Ft)t≥0,F ,P). Then, the Lévy measure of (Xt)t≥0 is 0, and
therefore (Xt)t≥0 may be written

Xt = σBt + µt,

where (Bt)t≥0 is a standard Brownian motion.

Proof. Let

ψ(λ) = iµλ− 1

2
σ2λ2 +

∫
R
(eiλx − 1− iλx1|x|≤1)ν(dx)

be the characteristic exponent of (Xt)t≥0. For ε ∈ (0, 1), we have

ψ = ψε + φε,

where

ψε(λ) = iµλ− 1

2
σ2λ2 +

∫
|x|≤ε

(eiλx − 1− iλx)ν(dx),

and

φε(λ) =

∫
|x|>ε

(eiλx − 1− iλx1|x|≤1)ν(dx).

This decomposition of ψ will actually correspond to a pathwise decomposition
of (Xt)t≥0.
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For t ≥ 0, let µt be the probability measure on R with characteristic func-
tion: ∫

R
eiλxµt(dx) = etψε(λ), λ ∈ R.

We have for s, t ≥ 0

µt ∗ µs = µt+s.

From Proposition 3.47, we therefore can find a probability space (Ω̃, (F̃t)t≥0, F̃ , P̃)
and a process (Yt)t≥0 that is a Lévy process with characteristics exponent
ψε(λ).

In the very same way, we may, by enlarging the filtered probability space
(Ω̃, (F̃t)t≥0, F̃ , P̃), construct a Lévy process (Zt)t≥0 that is independent of
(Yt)t≥0 and whose characteristic exponent is φε. We have

φε(λ) =

∫
|x|>ε

(eiλx − 1− iλx1|x|≤1)ν(dx)

=

∫
|x|>ε

(eiλx − 1)ν(dx)− iλ
∫
|x|>ε

x1|x|≤1ν(dx),

and

ν({x, | x |> ε}) < +∞.

Therefore, from Exercise 3.44

Zt = Lt − t
∫
|x|>ε

x1|x|≤1ν(dx),

where (Lt)t≥0 is a compound Lévy process. We deduce that the paths of
the process (Zt)t≥0 only have a finite number of jumps within any finite time
interval. Moreover the size of these possible has to be larger than ε.

Since the two processes (Yt)t≥0 and (Zt)t≥0 are independent, the process

X̃t = Yt + Zt

is a Lévy process that has the same distribution as (Xt)t≥0. Also, almost surely,
the possible jumps of (Yt)t≥0 and (Zt)t≥0 do not intersect. Thus, every jump of

(Yt)t≥0 induces a jump of (X̃t)t≥0. Since (Xt)t≥0 is assumed to be continuous,
(Yt)t≥0 has no jumps. This implies

ν({x, | x |> ε}) = 0.

Since it should hold for every ε, we deduce ν = 0. 2

Exercise 3.55. State and prove a multidimensional extension of Theorem 3.54.
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Notes and Comments

Sections 1,2,3. One of the first major actors of the rigorous and general
theory of continuous time Markov processes as presented here, is Dynkin, we
refer to his book [?] for an overview of the origins of the theory. The theory of
Markov processes and diffusion processes is now very rich and numerous refer-
ences are available to the interested reader. We wish to mention in particular
the books by Bass [?], Chung [?], and Ethier and Kurtz [?]. For the connec-
tion between pseudo-differential operators satisfying maximum principle and
Markov processes, we refer to the books by Jacob [?] and [?].

Section 4. Lévy processes have been widely and extensively studied and
several results of Chapter 2 can be extended to Lévy processes. We refer to
the books by Applebaum [?], Bertoin [?] or Sato [?] for further details.



Chapter 4

Symmetric diffusion semigroups

As we have seen in Theorem 3.37, the generator of a Feller-Dynkin diffusion
process is of the form

L =

n∑
i=1

bi(x)
∂

∂xi
+

n∑
i,j=1

σij(x)
∂2

∂xi∂xj
,

where bi and σij are continuous functions on Rn such that for every x ∈ Rn, the
matrix (σij(x))1≤i,j≤n is a symmetric and non negative matrix. Such second
order differential operators are generically called diffusion operators.

Conversely, it is often important to know if given a diffusion operator, there
is a unique transition function that admits this operator as a generator. This
problem is difficult to answer in all generality. As we will discuss it in Chapter
6, the theory of stochastic differential equations provides a fantastic proba-
bilistic tool to study this question (see Theorem 6.15 and Proposition 6.16 in
Chapter 6) but the theory of Dirichlet forms and associated symmetric diffusion
semigroups that we introduce in this chapter applies in much more general sit-
uations. We assume here some basic knowledge about the theory of unbounded
operators on Hilbert or Banach spaces and at some points some basic knowl-
edge about the local regularity theory for elliptic operators. Elements of these
theories are given in the appendices at the end of the book.

1 Essential self-adjointness, Spectral theorem

Throughout the section, we consider a second order differential operator that
can be written

L =

n∑
i,j=1

σij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
,

where bi and σij are continuous functions on Rn and for every x ∈ Rn, the
matrix (σij(x))1≤i,j≤n is a symmetric and non negative matrix. Such operator
is called a diffusion operator.

We will assume that there is Borel measure µ which is equivalent to the
Lebesgue measure and that symmetrizes L in the sense that for every smooth
and compactly supported functions f, g : Rn → R,∫

Rn
gLfdµ =

∫
Rn
fLgdµ.

In what follows, as usual, we denote by Cc(Rn,R) the set of smooth and com-
pactly supported functions f : Rn → R.
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Exercise 4.1. Show that if µ is a symmetric measure for L as above, then in
the sense of distributions

L′µ = 0,

where L′ is the adjoint of L in distribution sense.

Exercise 4.2. Show that if f : Rn → R is a smooth function and if g ∈
Cc(Rn,R), then we still have the formula,∫

Rn
fLgdµ =

∫
Rn
gLfdµ.

Exercise 4.3. On Cc(Rn,R), let us consider the operator

L = ∆ + 〈∇U,∇·〉,

where U : Rn → R is a C1 function. Show that L is symmetric with respect to
the measure

µ(dx) = eU(x)dx.

Exercise 4.4 (Divergence form operator). On Cc(Rn,R), let us consider the
operator

Lf = div(σ∇f),

where div is the divergence operator defined on a C1 function φ : Rn → Rn by

div φ =

n∑
i=1

∂φi
∂xi

and where σ is a C1 field of non negative and symmetric matrices. Show that L
is a diffusion operator which is symmetric with respect to the Lebesgue measure
of Rn.

For every smooth functions f, g : Rn → R, let us define the so-called carré
du champ1, which is the symmetric first-order differential form defined by:

Γ(f, g) =
1

2
(L(fg)− fLg − gLf) .

A straightforward computation shows that

Γ(f, g) =

n∑
i,j=1

σij(x)
∂f

∂xi

∂g

∂xj
,

so that for every smooth function f ,

Γ(f, f) ≥ 0.

1The litteral translation from French is square of the field.
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Exercise 4.5.

1. Show that if f, g : Rn → R are C1 functions and φ1, φ2 : R→ R are also
C1 then,

Γ(φ1(f), φ2(g)) = φ′1(f)φ′2(g)Γ(f, g).

2. Show that if f : Rn → R is a C2 function and φ : R→ R is also C2,

Lφ(f) = φ′(f)Lf + φ′′(f)Γ(f, f).

In the sequel we shall consider the bilinear form given for f, g ∈ Cc(Rn,R)
by

E(f, g) =

∫
Rn

Γ(f, g)dµ.

This is the so-called Dirichlet form associated to L. It is readily checked that
E is symmetric:

E(f, g) = E(g, f),

and non negative

E(f, f) ≥ 0.

We may observe that thanks to symmetry of L,

E(f, g) = −
∫
Rn
fLgdµ = −

∫
Rn
gLfdµ.

The operator L on its domain D(L) = Cc(Rn,R) is a densely defined non
positive symmetric operator on the Hilbert space L2

µ(Rn,R). However, it is of
course not self-adjoint, indeed Exercise 4.2 easily shows that{

f ∈ C∞(Rn,R), ‖f‖L2
µ(Rn,R) + ‖Lf‖L2

µ(Rn,R) <∞
}
⊂ D(L∗).

A famous theorem of Von Neumann asserts that any non negative and
symmetric operator may be extended into a self-adjoint operator. The following
construction, due to Friedrichs, provides a canonical non negative self-adjoint
extension.

Theorem 4.6 (Friedrichs extension). On the Hilbert space L2
µ(Rn,R), there

exists a densely defined non positive self-adjoint extension of L.

Proof. The idea is to work with a Sobolev type norm associated to the energy
form E . On Cc(Rn,R), let us consider the following norm

‖f‖2E = ‖f‖2L2
µ(Rn,R) + E(f, f).
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By completing Cc(Rn,R) with respect to this norm, we get a Hilbert space
(H, 〈·, ·〉E). Since for f ∈ Cc(Rn,R), ‖f‖L2

µ(Rn,R) ≤ ‖f‖E , the injection map ι :

(Cc(Rn,R), ‖·‖E)→ (L2
µ(Rn,R), ‖·‖L2

µ(Rn,R)) is continuous and it may therefore

be extended into a continuous map ῑ : (H, ‖ · ‖E) → (L2
µ(Rn,R), ‖ · ‖L2

µ(Rn,R)).
Let us show that ῑ is injective so that H may be identified with a subspace
of L2

µ(Rn,R). So, let f ∈ H such that ῑ(f) = 0. We can find a sequence
fn ∈ Cc(Rn,R), such that ‖fn − f‖E → 0 and ‖fn‖L2

µ(Rn,R) → 0. We have

‖f‖E = lim
m,n→+∞

〈fn, fm〉E

= lim
m→+∞

lim
n→+∞

〈fn, fm〉L2
µ(Rn,R) + E(fn, fm)

= lim
m→+∞

lim
n→+∞

〈fn, fm〉L2
µ(Rn,R) − 〈fn, Lfm〉L2

µ(Rn,R)

= 0,

thus f = 0 and ῑ is injective. Let us now consider the map

B = ῑ · ῑ∗ : L2
µ(Rn,R)→ L2

µ(Rn,R).

It is well defined due to the fact that since ῑ is bounded, it is easily checked
that

D(ῑ∗) = L2
µ(Rn,R).

Moreover, B is easily seen to be symmetric, and thus self-adjoint because
its domain is equal to L2

µ(Rn,R). Also, it is readily checked that the injectivity
of ῑ implies the injectivity of B. Therefore the inverse

A = B−1 : R(ῑ · ῑ∗) ⊂ L2
µ(Rn,R)→ L2

µ(Rn,R)

is a densely defined self-adjoint operator on L2
µ(Rn,R) (see the appendix on

unbounded operators on Banach spaces). Now, we observe that for f, g ∈
Cc(Rn,R),

〈f, g〉L2
µ(Rn,R) − 〈Lf, g〉L2

µ(Rn,R)

=〈̄i−1(f), ī−1(g)〉E
=〈(̄i−1)∗ī−1f, g〉L2

µ(Rn,R)

=〈(̄īi∗)−1f, g〉L2
µ(Rn,R)

Thus A and Id− L coincide on Cc(Rn,R). By defining,

−L̄ = A− Id,

we get the required self-adjoint extension of −L. 2

Remark 4.7. The operator L̄, as constructed above, is called the Friedrichs
extension of L. Intuitively, it is the minimal self-adjoint extension of L.
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Definition 4.8. If L̄ is the unique non positive self-adjoint extension of L,
then the operator L is said to be essentially self-adjoint on Cc(Rn,R). In that
case, there is no ambiguity and we shall denote L̄ = L.

We have the following first criterion for essential self-adjointness.

Lemma 4.9. If for some λ > 0,

Ker(−L∗ + λId) = {0},

then the operator L is essentially self-adjoint on Cc(Rn,R).

Proof. We make the proof for λ = 1 and let the reader adapt it for λ 6= 0.
Let −L̃ be a non negative self-adjoint extension of −L. We want to prove

that actually, −L̃ = −L̄. The assumption

Ker(−L∗ + Id) = {0}

implies that Cc(Rn,R) is dense in D(−L∗) for the norm

‖f‖2E = ‖f‖2L2
µ(Rn,R) − 〈f, L

∗f〉L2
µ(Rn,R).

Since, −L̃ is a non negative self-adjoint extension of −L, we have

D(−L̃) ⊂ D(−L∗).

The space Cc(Rn,R) is therefore dense in D(−L̃) for the norm ‖ · ‖E .
At that point, we use some notations introduced in the proof of the Friedrichs

extension (Theorem 4.6). Since Cc(Rn,R) is dense in D(−L̃) for the norm ‖·‖E ,
we deduce that the equality

〈f, g〉L2
µ(Rn,R) − 〈L̃f, g〉L2

µ(Rn,R) = 〈̄i−1(f), ī−1(g)〉E ,

which is obviously satisfied for f, g ∈ Cc(Rn,R) actually also holds for f, g ∈
D(L̃). From the definition of the Friedrichs extension, we deduce that L̄ and L̃
coincide on D(L̃). Finally, since these two operators are self adjoint we conclude
L̄ = L̃. 2

Remark 4.10. Given the fact that−L is given here with the domain Cc(Rn,R),
the condition

Ker(−L∗ + λId) = {0},

is equivalent to the fact that if f ∈ L2
µ(Rn,R) is a function that satisfies in the

sense of distributions
−Lf + λf = 0,

then f = 0.
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As a corollary of the previous lemma, the following proposition provides a
useful sufficient condition for essential self-adjointness that is easy to check for
several diffusion operators. We recall that a diffusion operator is said to be
elliptic if the matrix σ is invertible.

Proposition 4.11. If the diffusion operator L is elliptic with smooth coeffi-
cients and if there exists an increasing sequence hn ∈ Cc(Rn,R), 0 ≤ hn ≤ 1,
such that hn ↗ 1 on Rn, and ||Γ(hn, hn)||∞ → 0, as n→∞, then the operator
L is essentially self-adjoint on Cc(Rn,R).

Proof. Let λ > 0. According to the previous lemma, it is enough to check that
if L∗f = λf with λ > 0, then f = 0. As it was observed above, L∗f = λf
is equivalent to the fact that, in sense of distributions, Lf = λf . From the
hypoellipticity of L, we deduce therefore that f is a smooth function. Now, for
h ∈ Cc(Rn,R), ∫

Rn
Γ(f, h2f)dµ = −〈f, L(h2f)〉L2

µ(Rn,R)

= −〈L∗f, h2f〉L2
µ(Rn,R)

= −λ〈f, h2f〉L2
µ(Rn,R)

= −λ〈f2, h2〉L2
µ(Rn,R)

≤ 0.

Since
Γ(f, h2f) = h2Γ(f, f) + 2fhΓ(f, h),

we deduce that

〈h2,Γ(f, f)〉L2
µ(Rn,R) + 2〈fh,Γ(f, h)〉L2

µ(Rn,R) ≤ 0.

Therefore, by Cauchy-Schwarz inequality

〈h2,Γ(f, f)〉L2
µ(Rn,R) ≤ 4‖f |22‖Γ(h, h)‖∞.

If we now use the sequence hn and let n → ∞, we obtain Γ(f, f) = 0 and
therefore f = 0, as desired. 2

Exercise 4.12. Let
L = ∆ + 〈∇U,∇·〉,

where U is a smooth function on Rn. Show that with respect to the measure
µ(dx) = eU(x)dx, the operator L is essentially self-adjoint on Cc(Rn,R).

Exercise 4.13. On Rn, we consider the divergence form operator

Lf = div(σ∇f),
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where σ is a smooth field of positive and symmetric matrices that satisfies

a‖x‖2 ≤ 〈x, σx〉 ≤ b‖x‖2, x ∈ Rn,

for some constant 0 < a ≤ b. Show that with respect to the Lebesgue measure,
the operator L is essentially self-adjoint on Cc(Rn,R)

Exercise 4.14. On Rn, we consider the Schrödinger type operator

H = L− V,

where L is a diffusion operator and V : Rn → R is a smooth function. We
denote

Γ(f, g) =
1

2
(L(fg)− fLg − gLf) .

Show that if there exists an increasing sequence hn ∈ Cc(Rn,R), 0 ≤ hn ≤ 1,
such that hn ↗ 1 on Rn, and ||Γ(hn, hn)||∞ → 0, as n → ∞ and that if V is
bounded from below then H is essentially self-adjoint on Cc(Rn,R).

From now on, we assume that the diffusion operator L is essentially self-
adjoint on Cc(Rn,R). Its Friedrichs extension is still denoted by L. The fact
that we are now dealing with a non negative self-adjoint operator allows us
to use spectral theory in order to define etL. Indeed, we have the following
so-called spectral theorem whose proof can be found in [?].

Theorem 4.15 (Spectral theorem). Let A be a non negative self-adjoint oper-
ator on a separable Hilbert space H. There is a measure space (Ω, ν), a unitary
map U : L2

ν(Ω,R) → H and a non negative real valued measurable function λ
on Ω such that

U−1AUf(x) = λ(x)f(x),

for x ∈ Ω, Uf ∈ D(A). Moreover, given f ∈ L2
ν(Ω,R), Uf belongs to D(A) if

only if
∫

Ω
λ2f2dν < +∞.

We may now apply the spectral theorem to −L in order to define etL. More
generally, given a Borel function g : R≥0 → R and the spectral decomposition
of −L:

U−1LUf(x) = −λ(x)f(x),

we may define an operator g(−L) as being the unique operator that satisfies

U−1g(−L)Uf(x) = (g ◦ λ)(x)f(x).

We may observe that g(−L) is a bounded operator if g is a bounded function.
As a particular case, we define the diffusion semigroup (Pt)t≥0 on L2

µ(Rn,R)
by the requirement

U−1PtUf(x) = e−tλ(x)f(x).

This defines a family of bounded operators Pt : L2
µ(Rn,R)→ L2

µ(Rn,R) whose
following properties are readily checked from the spectral decomposition:
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• For f ∈ L2
µ(Rn,R),

‖Ptf‖L2
µ(Rn,R) ≤ ‖f‖L2

µ(Rn,R).

• P0 = Id and for s, t ≥ 0, PsPt = Ps+t.

• For f ∈ L2
µ(Rn,R), the map t→ Ptf is continuous in L2

µ(Rn,R).

• For f, g ∈ L2
µ(Rn,R),∫

Rn
(Ptf)gdµ =

∫
Rn
f(Ptg)dµ

We summarize the above properties by saying that (Pt)t≥0 is a self-adjoint
strongly continuous contraction semigroup on L2

µ(Rn,R).

From the spectral decomposition, it is also easily checked that the operator
L is furthermore the generator of this semigroup, that is for f ∈ D(L),

lim
t→0

∥∥∥∥Ptf − f
t

− Lf
∥∥∥∥

L2
µ(Rn,R)

= 0.

From the semigroup property, it implies that for t ≥ 0, PtD(L) ⊂ D(L), and
that for f ∈ D(L),

d

dt
Ptf = PtLf = LPtf,

the derivative on the left hand side of the above equality being taken in
L2
µ(Rn,R).

Exercise 4.16. Let L be an essentially self-adjoint diffusion operator on Cc(Rn,R).
Show that if the constant function 1 ∈ D(L) and if L1 = 0, then

Pt1 = 1.

Exercise 4.17. Let L be an essentially self-adjoint diffusion operator on Cc(Rn,R).

1. Show that for every λ > 0, the range of the operator λId− L is dense in
L2
µ(Rn,R).

2. By using the spectral theorem, show that the following limit holds for the
operator norm on L2

µ(Rn,R)

Pt = lim
n→+∞

(
Id− t

n
L

)−n
.
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Exercise 4.18. As usual, we denote by ∆ the Laplace operator on Rn:

∆ =

n∑
i=1

∂2

∂x2
i

.

The Mac-Donald’s function with index ν ∈ R is defined for x ∈ R \ {0} by

Kν(x) =
1

2

(x
2

)ν ∫ +∞

0

e−
x2

4t −t

t1+ν
dt.

1. Show that for λ ∈ Rn and α > 0,

1

(2π)n/2

∫
Rn
ei〈λ,x〉

(
‖x‖√
α

)1−n2
Kn

2−1(
√
α‖x‖)dx =

1

α+ ‖λ‖2
.

2. Show that for ν ∈ R, K−ν = Kν .

3. Show that

K1/2(x) =

√
π

2x
e−x.

4. Prove that for f ∈ L2(Rn,R) and α > 0,

(αId−∆)−1f(x) =

∫
Rn
Gα(x− y)f(y)dy,

where

Gα(x) =
1

(2π)n/2

(
‖x‖√
α

)1−n2
Kn

2−1(
√
α‖x‖).

(You may use Fourier transform to solve the partial differential equation
αg −∆g = f).

5. Prove that for f ∈ L2(Rn,R)

lim
n→+∞

(
Id− t

n
∆

)−n
f =

1

(4πt)
n
2

∫
Rn
e−
‖x−y‖2

4t f(y)dy.

the limit being taken in L2(Rn,R). Conclude that almost everywhere,

Ptf(x) =
1

(4πt)
n
2

∫
Rn
e−
‖x−y‖2

4t f(y)dy.

Exercise 4.19.

1. Show the subordination identity:

e−y|α| =
y

2
√
π

∫ +∞

0

e−
y2

4t −tα
2

t3/2
dt, y > 0, α ∈ R.
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2. The Cauchy’s semigroup on Rn is defined as Qt = e−t
√
−∆. By using

the subordination identity and the heat semigroup on Rn, show that for
f ∈ L2(Rn,R)

Qtf(x) =

∫
Rn
q(t, x− y)f(y)dy,

where

q(t, x) =
Γ
(
n+1

2

)
π
n+1
2

t

(t2 + ‖x‖2)
n+1
2

.

2 Existence and regularity of the heat kernel

In order to study the regularization properties of diffusion semigroups, we apply
the theory of local elliptic regularity which is sketched in the Appendix B.

Proposition 4.20. Let L be an elliptic diffusion operator with smooth coeffi-
cients that is essentially self-adjoint with respect to a measure µ . Denote by
(Pt)t≥0 the corresponding semigroup on L2

µ(Rn,R).

• If K is a compact set of Rn, there exists a positive constant C such that
for f ∈ L2

µ(Rn,R):

sup
x∈K
|Ptf(x)| ≤ C

(
1 +

1

tκ

)
‖f‖L2

µ(Rn,R),

where κ is the smallest integer larger than n
4 .

• For f ∈ L2
µ(Rn,R), the function (t, x)→ Ptf(x) is smooth on (0,+∞)×

Rn;

Proof. Let us first observe that from the spectral theorem that if f ∈ L2
µ(Rn,R)

then for every k ≥ 0, LkPtf ∈ L2
µ(Rn,R) and

‖LkPtf‖L2
µ(Rn,R) ≤

(
sup
λ≥0

λke−λt
)
‖f‖L2

µ(Rn,R).

Now, let K be a compact set of Rn. From Proposition 7.65, there exists there-
fore a positive constant C such that(

sup
x∈K
|Ptf(x)|

)2

≤ C

(
κ∑
k=0

‖LkPtf‖2L2
µ(Rn,R)

)
.

Since it is immediately checked that

sup
λ≥0

λke−λt =

(
k

t

)k
e−k,
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the bound

sup
x∈K
|Ptf(x)| ≤ C

(
1 +

1

tκ

)
‖f‖L2

µ(Rn,R),

easily follows.
We now turn to the second part. Let f ∈ L2

µ(Rn,R).
First, we fix t > 0. As above, from the spectral theorem, for every k ≥ 0,

LkPtf ∈ L2
µ(Rn,R) ⊂ Hloc0 (Ω), for any bounded open set Ω. A recursive

application of Lemma 7.62 shows that, therefore Ptf ∈ ∩s>0Hlocs (Ω), which
implies from Sobolev lemma (Theorem 7.58) that Ptf is a smooth function.

Next, we prove joint continuity in the variables (t, x) ∈ (0,+∞)×Rn. It is
enough to prove that if t0 > 0 and if K is a compact set on Rn,

sup
x∈K
|Ptf(x)−Pt0f(x)| →t→t0 0.

From Proposition 7.65, there exists a positive constant C such that

sup
x∈K
|Ptf(x)−Pt0f(x)| ≤ C

(
κ∑
k=0

‖LkPtf − LkPt0f‖2L2
µ(Rn,R)

)
.

Now, again from the spectral theorem, it is checked that

lim
t→t0

κ∑
k=0

‖LkPtf − LkPt0f‖2L2
µ(Rn,R) = 0.

This gives the expected joint continuity in (t, x). The joint smoothness in (t, x)
is a consequence of the second part of Proposition 7.65 and the details are let
to the reader. 2

Remark 4.21. If bound

sup
x∈K
|Ptf(x)| ≤ C(t)‖f‖L2

µ(Rn,R)

uniformly holds on Rn, that is if the operator norm

‖Pt‖L2
µ(Rn,R)→L∞µ (Rn,R) <∞,

then the semigroup (Pt)t≥0 is said to be ultracontractive. The study of ul-
tracontractive semigroups is intimately related to the beautiful theory of log-
Sobolev inequalities. We refer the interested reader to the book [?].

Exercise 4.22. Let L be an elliptic diffusion operator with smooth coefficients
that is essentially self-adjoint with respect to a measure µ . Let α be a multi-
index. If K is a compact set of Rn, show that there exists a positive constant
C such that for f ∈ L2

µ(Rn,R):

sup
x∈K
|∂αPtf(x)| ≤ C

(
1 +

1

t|α|+κ

)
‖f‖L2

µ(Rn,R),

where κ is the smallest integer larger than n
4 .
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We now prove the following fundamental theorem:

Theorem 4.23. Let L be an elliptic and essentially self-adjoint diffusion op-
erator. Denote by (Pt)t≥0 the corresponding semigroup on L2

µ(Rn,R). There
is a smooth function p(t, x, y), t ∈ (0,+∞), x, y ∈ Rn, such that for every
f ∈ L2

µ(Rn,R) and x ∈ Rn ,

Ptf(x) =

∫
Rn
p(t, x, y)f(y)dµ(y).

The function p(t, x, y) is called the heat kernel associated to (Pt)t≥0. It satisfies
furthermore:

• (Symmetry) p(t, x, y) = p(t, y, x);

• (Chapman-Kolmogorov relation) p(t+s, x, y) =
∫
Rn p(t, x, z)p(s, z, y)dµ(z).

Proof. Let x ∈ Rn and t > 0. From the previous proposition, the linear
form f → Ptf(x) is continuous on L2

µ(Rn,R), therefore from the Riesz rep-
resentation theorem, there is a function p(t, x, ·) ∈ L2

µ(Rn,R), such that for
f ∈ L2

µ(Rn,R),

Ptf(x) =

∫
Rn
p(t, x, y)f(y)dµ(y).

From the fact that Pt is self-adjoint on L2
µ(Rn,R):∫

Rn
(Ptf)gdµ =

∫
Rn
f(Ptg)dµ,

we easily deduce the symmetry property:

p(t, x, y) = p(t, y, x).

And the Chapman-Kolmogorov relation p(t+s, x, y) =
∫
Rn p(t, x, z)p(s, z, y)dµ(z)

stems from the semigroup property Pt+s = PtPs. Finally, from the previous
proposition the map (t, x)→ p(t, x, ·) ∈ L2

µ(Rn,R) is smooth on (0,+∞)×Rn
for the weak topology on L2

µ(Rn,R). This implies that it is also smooth on
(0,+∞) × Rn for the norm topology. Since, from the Chapman-Kolmogorov
relation

p(t, x, y) = 〈p(t/2, x, ·), p(t/2, y.·)〉L2
µ(Rn,R),

we conclude that (t, x, y)→ p(t, x, y) is smooth on (0,+∞)× Rn × Rn. 2

3 The submarkov property

In the previous section, we have proved that if L is a diffusion operator that
is essentially self-adjoint on Cc(Rn,R), then by using the spectral theorem we
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can define a self-adjoint strongly continuous contraction semigroup (Pt)t≥0 on
L2
µ(Rn,R) with generator L.

In this section, we will be interested in the following additional property of
the semigroup (Pt)t≥0 : If f ∈ L2

µ(Rn,R) satisfies almost surely 0 ≤ f ≤ 1,
then almost surely 0 ≤ Ptf ≤ 1, t ≥ 0. This property is called the submarkov
property of the semigroup (Pt)t≥0. The terminology stems from the fact that
this is precisely this property that makes the link with probability theory be-
cause it is equivalent to the fact that (Pt)t≥0 is associated to the transition
function of a sub-Markov process.

As a first result, we prove that the semigroup (Pt)t≥ is positivity preserving.
This property may actually be seen at the level of the diffusion operator L, and
relies on the following distributional inequality that is satisfied by L.

Lemma 4.24 (Kato inequality). Let L be a diffusion operator on Rn with
symmetric and invariant measure µ. Let u ∈ Cc(Rn,R). Define

sgn u = 0 if u(x) = 0,

=
u(x)

|u(x)|
if u(x) 6= 0.

In the sense of distributions, we have the following inequality

L|u| ≥ (sgn u)Lu.

Proof. If φ is a smooth and convex function and if u is assumed to be smooth,
it is readily checked that

Lφ(u) = φ′(u)Lu+ φ′′(u)Γ(u, u) ≥ φ′(u)Lu.

By choosing for φ the function

φε(x) =
√
x2 + ε2, ε > 0,

we deduce that for every smooth function u ∈ Cc(Rn,R),

Lφε(u) ≥ u√
x2 + ε2

Lu.

As a consequence this inequality holds in the sense of distributions, that is for
every f ∈ Cc(Rn,R), f ≥ 0,∫

Rn
fLφε(u)dµ ≥

∫
Rn
f

u√
u2 + ε2

Ludµ

Letting ε→ 0 gives the expected result. 2

We are now in position to state and prove the positivity preserving theorem.
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Theorem 4.25. Let L be an essentially self adjoint diffusion operator on
Cc(Rn,R). If f ∈ L2

µ(Rn,R) is almost surely nonnegative (f ≥ 0), then we
have for every t ≥ 0, Ptf ≥ 0 almost surely.

Proof. The main idea is to prove that for λ > 0, the operator (λId − L)−1

which is well defined due to essential self adjointness preserves the positivity
of function. Then, we may conclude by the fact that for f ∈ L2

µ(Rn,R), in the
L2
µ(Rn,R) sense

Ptf = lim
n→+∞

(
Id− t

n
L

)−n
f.

Let λ > 0. We consider on Cc(Rn,R) the norm

‖f‖2λ = ‖f‖2L2
µ(Rn,R) + λE(f, f)

= ‖f‖2L2
µ(Rn,R) + λ

∫
Rn

Γ(f, f)dµ.

and denote by Hλ the completion of Cc(Rn,R). Using Kato’s inequality, it is
seen (multiply the inequality by u and integrate by parts, details are let to the
reader) that if u ∈ Hλ, then |u| ∈ Hλ and

E(|u|, |u|) ≤ E(u, u). (4.1)

Since L is essentially self-adjoint we can consider the bounded operator

Rλ = (Id− λL)−1

that goes from L2
µ(Rn,R) to D(L) ⊂ Hλ. For f ∈ Hλ and g ∈ L2

µ(Rn,R) with
g ≥ 0, we have

〈|f |,Rλg〉λ = 〈|f |,Rλg〉L2
µ(Rn,R) − λ〈|f |, LRλg〉L2

µ(Rn,R)

= 〈|f |, (Id− λL)Rλg〉L2
µ(Rn,R)

= 〈|f |, g〉L2
µ(Rn,R)

≥ |〈f, g〉L2
µ(Rn,R)|

≥ |〈f,Rλg〉λ|.

Moreover, from inequality (4.1), for f ∈ Hλ,

‖ |f | ‖2λ = ‖ |f | ‖2L2
µ(Rn,R) + λE(|f |, |f |)

≥ ‖f‖2L2
µ(Rn,R) + λE(f, f)

≥ ‖f‖2λ.

By taking f = Rλg in the two above sets of inequalities, we draw the conclusion

|〈Rλg,Rλg〉λ| ≤ 〈|Rλg|,Rλg〉λ ≤ ‖ |Rλg| ‖λ‖Rλg‖λ ≤ |〈Rλg,Rλg〉λ|.
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The above inequalities are therefore equalities which implies

Rλg = |Rλg|.

As a conclusion if g ∈ L2
µ(Rn,R) is ≥ 0, then for every λ > 0, (Id−λL)−1g ≥ 0.

Thanks to spectral theorem, in L2
µ(Rn,R),

Ptg = lim
n→+∞

(
Id− t

n
L

)−n
g.

By passing to a subsequence that converges pointwise almost surely, we deduce
that Ptg ≥ 0 almost surely. 2

Exercise 4.26. Let L be an elliptic diffusion operator with smooth coefficients
that is essentially self-adjoint. Denote by p(t, x, y) the heat kernel of Pt. Show
that p(t, x, y) ≥ 0. (Remark: It actually possible to prove that p(t, x, y) > 0).

Besides the positivity preserving property, the semigroup is a contraction
on L∞µ (Rn,R). More precisely we have

Theorem 4.27. Let L be an essentially self adjoint diffusion operator on
Cc(Rn,R). If f ∈ L2

µ(Rn,R) ∩ L∞µ (Rn,R), then Ptf ∈ L∞µ (Rn,R) and

‖Ptf‖∞ ≤ ‖f‖∞.

Proof. The proof is close and relies on the same ideas as the proof of the
positivity preserving Theorem 4.25. So, we only list below the main steps and
let the reader fills the details.

As before, for λ > 0, we consider on Cc(Rn,R) the norm

‖f‖2λ = ‖f‖2L2
µ(Rn,R) + λE(f, f)

= ‖f‖2L2
µ(Rn,R) + λ

∫
Rn

Γ(f, f)dµ.

and denote by Hλ the completion of Cc(Rn,R).

• The first step is to show that if 0 ≤ f ∈ Hλ, then 1∧f (minimum between
1 and f) also lies in Hλ and moreover

E(1 ∧ f, 1 ∧ f) ≤ E(f, f).

• Let f ∈ L2
µ(Rn,R) satisfy 0 ≤ f ≤ 1 and put g = Rλf = (Id−λL)−1f ∈

Hλ and h = 1 ∧ g. According to the first step, h ∈ Hλ and E(h, h) ≤
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E(g, g). Now, we observe that:

‖g − h‖2λ
=‖g‖2λ − 2〈g, h〉λ + ‖h‖2λ
=〈Rλf, f〉L2

µ(Rn,R) − 2〈f, h〉L2
µ(Rn,R) + ‖h‖2L2

µ(Rn,R) + λE(h, h)

=〈Rλf, f〉L2
µ(Rn,R) − ‖f‖2L2

µ(Rn,R) + ‖f − h‖2L2
µ(Rn,R) + λE(h, h)

≤〈Rλf, f〉L2
µ(Rn,R) − ‖f‖2L2

µ(Rn,R) + ‖f − g‖2L2
µ(Rn,R) + λE(g, g) = 0.

As a consequence g = h, that is 0 ≤ g ≤ 1.

• The previous step shows that if f ∈ L2
µ(Rn,R) satisfies 0 ≤ f ≤ 1 then

for every λ > 0, 0 ≤ (Id − λL)−1f ≤ 1. Thanks to spectral theorem, in
L2
µ(Rn,R),

Ptf = lim
n→+∞

(
Id− t

n
L

)−n
f.

By passing to a subsequence that converges pointwise almost surely, we
deduce that 0 ≤ Ptf ≤ 1 almost surely.

2

4 Lp theory: The interpolation method

In the previous section, we have seen that if L is an essentially self-adjoint
diffusion operator with invariant and symmetric measure µ, then, by using the
spectral theorem we can define a self-adjoint strongly continuous contraction
semigroup (Pt)t≥0 on L2

µ(Rn,R) with generator L.
Our goal, in this section, is to define, for 1 ≤ p ≤ +∞, Pt on Lpµ(Rn,R).

This may be done in a natural way by using the Riesz-Thorin interpolation
theorem that we state below. We refer the reader to the book [?] for a proof.

Theorem 4.28 (Riesz-Thorin interpolation theorem). Let 1 ≤ p0, p1, q0, q1 ≤
∞, and θ ∈ (0, 1). Define 1 ≤ p, q ≤ ∞ by

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
.

If T is a linear map such that

T : Lp0µ → Lq0µ , ‖T‖Lp0µ →L
q0
µ

= M0

T : Lp1µ → Lq1µ , ‖T‖Lp1µ →L
q1
µ

= M1,

then, for every f ∈ Lp0µ ∩ Lp1µ ,

‖Tf‖q ≤M1−θ
0 Mθ

1 ‖f‖p.



116 4 Symmetric diffusion semigroups

Hence T extends uniquely as a bounded map from Lpµ to Lqµ with

‖T‖Lpµ→Lqµ ≤M
1−θ
0 Mθ

1 .

Remark 4.29. The statement that T is a linear map such that

T : Lp0µ → Lq0µ , ‖T‖Lp0µ →L
q0
µ

= M0

T : Lp1µ → Lq1µ , ‖T‖Lp1µ →L
q1
µ

= M1,

means that there exists a map T : Lp0µ ∩ Lp1µ → Lq0µ ∩ Lq1µ with

sup
f∈L

p0
µ ∩L

p1
µ ,‖f‖p0≤1

‖Tf‖q0 = M0

and

sup
f∈L

p0
µ ∩L

p1
µ ,‖f‖p1≤1

‖Tf‖q1 = M1.

In such a case, T can be uniquely extended to bounded linear maps T0 : Lp0µ →
Lq0µ , T1 : Lp1µ → Lq1µ . With a slight abuse of notation, these two maps are both
denoted by T in the theorem.

Remark 4.30. If f ∈ Lp0µ ∩ Lp1µ and p is defined by 1
p = 1−θ

p0
+ θ

p1
, then by

Hölder’s inequality, f ∈ Lpµ and

‖f‖p ≤ ‖f‖1−θp0 ‖f‖
θ
p1 .

One of the (numerous) beautiful applications of the Riesz-Thorin theorem
is to construct diffusion semigroups on Lp by interpolation. More precisely, let
L be an essentially self-adjoint diffusion operator. We denote by (Pt)t≥0 the
self-adjoint strongly continuous semigroup associated to L constructed on L2

µ

thanks to the spectral theorem. We recall that (Pt)t≥0 satisfies the submarkov
property: That is, if 0 ≤ f ≤ 1 is a function in L2

µ, then 0 ≤ Ptf ≤ 1.

We now are in position to state the following theorem:

Theorem 4.31. The space L1
µ ∩ L∞µ is invariant under Pt and Pt may be

extended from L1
µ ∩ L∞µ to a contraction semigroup (P

(p)
t )t≥0 on Lpµ for all

1 ≤ p ≤ ∞: For f ∈ Lpµ,

‖Ptf‖Lpµ ≤ ‖f‖Lpµ .

These semigroups are consistent in the sense that for f ∈ Lpµ ∩ Lqµ,

P
(p)
t f = P

(q)
t f.
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Proof. If f, g ∈ L1
µ ∩ L∞µ which is a subset of L1

µ ∩ L∞µ , then from Theorem
4.27, ∣∣∣∣∫

Rn
(Ptf)gdµ

∣∣∣∣ =

∣∣∣∣∫
Rn
f(Ptg)dµ

∣∣∣∣
≤ ‖f‖L1

µ
‖Ptg‖L∞µ

≤ ‖f‖L1
µ
‖g‖L∞µ .

This implies
‖Ptf‖L1

µ
≤ ‖f‖L∞1 .

The conclusion follows then from the Riesz-Thorin interpolation theorem. 2

Exercise 4.32. Show that if f ∈ Lpµ and g ∈ Lqµ with 1
p + 1

q = 1 then,∫
Rn
fP

(q)
t gdµ =

∫
Rn
gP

(p)
t fdµ.

Exercise 4.33.

1. Show that for each f ∈ L1
µ, the L1

µ-valued map t→ P
(1)
t f is continuous.

2. Show that for each f ∈ Lpµ, 1 < p < 2, the Lpµ-valued map t → P
(p)
t f is

continuous.

3. Finally, by using the reflexivity of Lpµ, show that for each f ∈ Lpµ and

every p ≥ 1, the Lpµ-valued map t→ P
(p)
t f is continuous.

We mention, that in general, the L∞µ valued map t→ P
(∞)
t f is not continuous.

5 Lp theory: The Hille-Yosida method

In the previous subsections we learnt how to construct a semigroup from a
diffusion operator by using the theory of self-adjoint unbounded operators on
Hilbert spaces. In particular, we proved the following result.

Theorem 4.34. Let L be a elliptic diffusion operator with smooth coefficients
on Rn. If:

• There is a Borel measure µ, symmetric for L on Cc(Rn,R);

• There exists an increasing sequence hn ∈ Cc(Rn,R), 0 ≤ hn ≤ 1, such
that hn ↗ 1 on Rn, and ||Γ(hn, hn)||∞ → 0, as n→∞.

Then, by using the spectral theorem we can define a self-adjoint strongly contin-
uous contraction semigroup (Pt)t≥0 on L2

µ(Rn,R) with generator L. Moreover,
Pt is a submarkov semigroup.
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In this section we will work under the assumptions of the above theorem.
Our goal will be to define, for 1 < p < +∞, Pt on Lpµ(Rn,R). This can be
done by using the interpolation method described in the previous subsection
but also by using so-called Hille-Yosida theory of contraction semigroups on
Banach spaces.

5.1 Semigroups on Banach spaces

Let (B, ‖ · ‖) be a Banach space (which for us will later be Lpµ(Rn,R), 1 < p <
+∞). We first have the following basic definition.

Definition 4.35. A family of bounded operators (Tt)t≥0 on B is called a
strongly continuous contraction semigroup if:

• T0 = Id and for s, t ≥ 0, Ts+t = TsTt;

• For each x ∈ B, the map t→ Ttx is continuous;

• For each x ∈ B and t ≥ 0, ‖Ttx‖ ≤ ‖x‖.

Now, let us recall that a densely defined linear operator

A : D(A) ⊂ B → B

is said to be closed if for every sequence xn ∈ D(A) that converges to x ∈ B
and such that Axn → y ∈ B, we have x ∈ D(A) and y = Ax. We observe
that any densely defined operator A may be extended into a closed operator.
Indeed, let us consider on D(A) the norm

‖x‖A = ‖x‖+ ‖Ax‖,

and let us complete D(A), to obtain a Banach space B. Since ‖x‖ ≤ ‖x‖A, we
may identify B as a subset of B. Moreover ‖Ax‖ ≤ ‖x‖A, therefore, A can be
extended into an operator Ā : B → B, and it is readily checked that Ā with
domain B is a closed extension of A. The operator Ā is called the closure of A.

In this situation, we have the following proposition that extends the The-
orem 3.31, and whose proof is pretty much the same and therefore let to the
reader.

Proposition 4.36. Let (Tt)t≥0 be a strongly continuous contraction semigroup
on B. There exists a closed and densely defined operator

A : D(A) ⊂ B → B

where

D(A) =

{
x ∈ B, lim

t→0

Ttx− x
t

exists

}
,
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such that for x ∈ D(A),

lim
t→0

∥∥∥∥Ttx− xt
−Ax

∥∥∥∥ = 0.

The operator A is called the generator of the semigroup (Tt)t≥0. We also say
that A generates (Tt)t≥0.

Remark 4.37. We may observe that the proof of the above result does not
involve the contraction property of (Tt)t≥0, so that it may be extended to
strongly continuous semigroups.

The following important theorem is due to Hille and Yosida and provides,
through spectral properties, a characterization of closed operators that are
generators of contraction semigroups.

Let A : D(A) ⊂ B → B be a densely defined closed operator. A constant
λ ∈ R is said to be in the spectrum of A if the operator λId−A is not bijective.
In that case, it is a consequence of the closed graph theorem2 that if λ is not
in the spectrum of A , then the operator λId−A has a bounded inverse. The
spectrum of an operator A shall be denoted ρ(A).

Theorem 4.38 (Hille-Yosida theorem). A necessary and sufficient condition
that a densely defined closed operator A generates a strongly continuous con-
traction semigroup is that:

• ρ(A) ⊂ (−∞, 0];

• ‖(λId−A)−1‖ ≤ 1
λ for all λ > 0.

Proof. Let us first assume that A generates a strongly continuous contraction
semigroup (Tt)t≥0. Let λ > 0. We want to prove that λId − A is a bijective
operator D(A)→ B.

The formal Laplace transform formula∫ +∞

0

e−λtetAdt = (λId−A)−1,

suggests that the operator

Rλ =

∫ +∞

0

e−λtTtdt

is the inverse of λId − A. First, let us observe that Rλ is well-defined as a
Riemann integral since t→ Tt is continuous and ‖Tt‖ ≤ 1. We now show that

2An everywhere defined operator between two Banach spaces A : B1 → B2 is bounded if
and only if it is closed.
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for x ∈ B, Rλx ∈ D(A). For h > 0,

Th − Id

h
Rλx =

∫ +∞

0

e−λt
Th − Id

h
Ttxdt

=

∫ +∞

0

e−λt
Th+t − Tt

h
xdt

= eλh
∫ +∞

h

e−λs
Ts − Ts−h

h
xds

=
eλh

h

(
Rλx−

∫ h

0

e−λsTsxds−
∫ +∞

h

e−λsTs−hxds

)

=
eλh − 1

h
Rλx−

eλh

h

∫ h

0

e−λsTsxds

By letting h→ 0, we deduce that Rλx ∈ D(A) and moreover

ARλx = λRλx− x.

Therefore we proved
(λId−A)Rλ = Id.

Furthermore, it is readily checked that, since A is closed, for x ∈ D(A),

ARλx = A

∫ +∞

0

e−λtTtxdt =

∫ +∞

0

e−λtATtxdt =

∫ +∞

0

e−λtTtAxdt = RλAx.

We therefore conclude

(λId−A)Rλ = Rλ(λId−A) = Id.

Thus,
Rλ = (λId−A)−1,

and it is clear that

‖Rλ‖ ≤
1

λ
.

Let us now assume that A is a densely defined closed operator such that

• ρ(A) ⊂ (−∞, 0];

• ‖(λId−A)−1‖ ≤ 1
λ for all λ > 0.

The idea is to consider the following sequence of bounded operators

An = −nId + n2(nId−A)−1,

from which it is easy to define a contraction semigroup and then to show that
An → A. We will then define a contraction semigroup associated to A as the
limit of the contraction semigroups associated to An.
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First, for x ∈ D(A), we have

Anx = n(nId−A)−1Ax→n→+∞ 0.

Now, since An is a bounded operator, we may define a semigroup (Tnt )t≥0

through the formula

Tnt =

+∞∑
k=0

tkAkn
k!

.

At that point, let us observe that we also have

Tnt = e−nt
+∞∑
k=0

n2ktk(nId−A)−k

k!
.

As a consequence, we have

‖Tnt ‖ ≤ e−nt
+∞∑
k=0

n2k‖(nId−A)−1‖k

k!

≤ e−nt
+∞∑
k=0

nktk

k!

≤ 1

and (Tnt )t≥0 is therefore a contraction semigroup. The strong continuity is also
easily checked:

‖Tnt+h − Tnt ‖ = ‖Tnt (Tnh − Id)‖
≤ ‖Tnh − Id)‖

≤
+∞∑
k=1

hk‖An‖k

k!

→h→0 0.

We now prove that for fixed t ≥ 0, x ∈ D(A), (Tnt x)n≥1 is a Cauchy sequence.
We have

‖Tnt x− Tmt x‖ =

∥∥∥∥∫ t

0

d

ds
(Tns T

m
t−sx)ds

∥∥∥∥
=

∥∥∥∥∫ t

0

Tns T
m
t−s(Anx−Amx)ds

∥∥∥∥
≤
∫ t

0

‖Anx−Amx‖ds

≤ t‖Anx−Amx‖.
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Therefore for x ∈ D(A), (Tnt x)n≥1 is a Cauchy sequence and we can define

Ttx = lim
n→+∞

Tnt x.

Since D(A) is dense and the family (Tnt )n≥1 uniformly bounded, the above limit
actually exists for every x ∈ B, so that (Tt)t≥0 is well-defined on B. It is clear
that (Tt)t≥0 is a strongly continuous semigroup, inheriting these properties
from (Tnt )t≥0 (the details are let to the reader here).

It remains to show that the generator of (Tt)t≥0, call it Ã is equal to A. For
every t ≥ 0, x ∈ D(A) and n ≥ 1,

Tnt x = x+

∫ t

0

Tns Axds,

therefore

Tnt x = x+

∫ t

0

Tns Axds.

Hence D(A) ⊂ D(Ã) and for x ∈ D(A), Ãx = Ax. Finally, since for λ > 0,
(λId−A)D(A) = B = (λId− Ã)D(Ã), we conclude D(A) = D(Ã). 2

Exercise 4.39. By using the proof of Theorem 4.38, show the following fact: If
A1 and A2 are the generators of contraction semigroups (T 1

t )t≥0 and (T 2
t )t≥0,

then for x ∈ B, the two following statements are equivalent:

• ∀ λ > 0, (λId−A1)−1x = (λId−A2)−1x;

• ∀ t ≥ 0, T 1
t x = T 2

t x.

As powerful as it is, the Hille-Yosida theorem is difficult to directly apply
to the theory of diffusion semigroups. We shall need a corollary of it that is
more suited to this case.

Definition 4.40. A densely defined operator on a Banach space B is called
dissipative if for each x ∈ D(A), we can find an element φ of the dual space
B∗, such that:

• ‖φ‖ = ‖x‖;

• φ(x) = ‖x‖2;

• φ(Ax) ≤ 0.

With this new definition in hands, we have the following corollary of the
Hille-Yosida theorem:

Corollary 4.41. A closed operator A on a Banach space B is the generator
of a strongly continuous contraction semigroup, if and only if:
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• A is dissipative;

• For λ > 0, the range of the operator λId−A is B.

Proof. Let us first assume that A is the generator of a contraction semigroup
(Tt)t≥0. From the Hahn-Banach theorem, there exists φ ∈ B∗ such that ‖φ‖ =
‖x‖ and φ(x) = ‖x‖2. We have, at t = 0,

d

dt
φ(Ttx) = φ(Ax),

but

|φ(Ttx)| ≤ ‖φ‖‖Ttx‖ ≤ ‖φ‖‖x‖ ≤ ‖x‖2 ≤ φ(x),

thus, at t = 0,
d

dt
φ(Ttx) ≤ 0,

and we conclude

φ(Ax) ≤ 0.

The fact that for λ > 0, the range of the operator λId − A is B is a straight-
forward consequence of Theorem 4.38.

Let us now assume that A is a densely defined closed operator such that:

• A is dissipative;

• For λ > 0, the range of the operator λId−A is B.

Let x ∈ D(A) and let φ ∈ B∗, such that:

• ‖φ‖ = ‖x‖;

• φ(x) = ‖x‖2;

• φ(Ax) ≤ 0.

For λ > 0,

λ‖x‖2 ≤ λφ(x)− φ(Ax)

≤ φ((λId−A)x)

≤ ‖x‖‖(λId−A)x‖.

Thus,

‖(λId−A)x‖ ≥ λ‖x‖.

This implies that the range Rλ of the operator λId−A is closed and that this
operator has a bounded inverse from Rλ to D(A) with norm lower than 1

λ .
Since Rλ = B, the proof is complete. 2
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5.2 Applications to diffusion semigroups

After this digression on the theory of contraction semigroups on Banach spaces,
we now come back to the case of diffusion semigroups. Let us recall that we
consider an elliptic diffusion operator L on Rn with smooth coefficients such
that:

• There is a Borel measure µ, symmetric and invariant for L on Cc(Rn,R);

• There exists an increasing sequence hn ∈ Cc(Rn,R), 0 ≤ hn ≤ 1, such
that hn ↗ 1 on Rn, and ||Γ(hn, hn)||∞ → 0, as n→∞.

Let 1 < p < +∞. We want to apply the previous theorems for the operator
L on the Banach space Lpµ(Rn,R). We denote by L(p) the closure in Lpµ(Rn,R)
of the operator L, densely defined on Cc(Rn,R).

First, we have the following lemma.

Lemma 4.42. Let 1 < p ≤ q < +∞ and λ > 0. If f ∈ Lpµ(Rn,R) + Lqµ(Rn,R)
and satisfies in the sense of distributions

Lf = λf,

then f = 0.

Proof. We use an idea already present in the proof of Proposition 4.11. Let
us first observe that if f ∈ Lpµ(Rn,R) + Lqµ(Rn,R), satisfies in the sense of
distributions

Lf = λf,

then it is actually a smooth function, due to the ellipticity of L. Now, let
h ∈ Cc(Rn,R), h ≥ 0, and let φ be a smooth nonnegative function to be
precised later. We have∫

Rn
Γ(f, h2φ(f)f)dµ = −

∫
Rn
fL(h2φ(f)f)dµ

= −λ
∫
Rn
h2φ(f)f2dµ

≤ 0.

But

Γ(f, h2φ(f)f) = h2Γ(f, φ(f)f) + 2φ(f)fhΓ(f, h)

= h2(φ′(f)f + φ(f))Γ(f, f) + 2φ(f)fhΓ(f, h),

therefore ∫
Rn
h2(φ′(f)f + φ(f))Γ(f, f) + 2φ(f)fhΓ(f, h)dµ ≤ 0,
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which implies∫
Rn
h2(φ′(f)f + φ(f))Γ(f, f)dµ ≤ −2

∫
Rn
φ(f)fhΓ(f, h)dµ. (4.2)

From the Cauchy Schwarz inequality, we have∣∣∣∣∫
Rn
φ(f)fhΓ(f, h)dµ

∣∣∣∣ ≤ 2
√
‖Γ(h, h)‖∞

√∫
Rn
φ(f)h2Γ(f, f)dµ

√∫
K

φ(f)f2dµ,

(4.3)

where K is any compact set containing the support of h. Let us now assume
that we may chose the function φ in such a way that for every x ∈ R,

φ′(x)x+ φ(x) ≥ Cφ(x),

with C > 0. In that case, from (4.2) and (4.3), we have∫
Rn
φ(f)h2Γ(f, f)dµ ≤ 4

C2
‖Γ(h, h)‖∞

∫
K

φ(f)f2dµ. (4.4)

We now proceed to the choice for the function φ. For 0 < ε < 1 , let

φε(x) = |x|p−2, |x| ≥ 1

= (x2 + ε2)
q
2−1, |x| ≤ 1− ε.

We then extend φε in a smooth way to R in such a way that there is a constant
C > 0, independent of ε such that for every x ∈ R,

φ′ε(x)x+ φε(x) ≥ Cφε(x).

The proof of the possibility of such an extension is let to the reader.
By using the inequality (4.4) for φε, we obtain∫

Rn
φε(f)h2Γ(f, f)dµ ≤ 4

C2
‖Γ(h, h)‖∞

∫
K

φε(f)f2dµ.

By letting ε→ 0, we draw the conclusion∫
Rn
φ0(f)h2Γ(f, f)dµ ≤ 4

C2
‖Γ(h, h)‖∞

∫
K

φ0(f)f2dµ,

where

φ0(x) = |x|p−2, |x| ≥ 1

= |x|q−2, |x| ≤ 1.
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Due to the assumption, f ∈ Lpµ(Rn,R)+Lqµ(Rn,R), the function φ0 is integrable
on Rn, thus∫

Rn
φ0(f)h2Γ(f, f)dµ ≤ 4

C2
‖Γ(h, h)‖∞

∫
Rn
φ0(f)f2dµ.

By using the previous inequality with an increasing sequence hn ∈ Cc(Rn,R),
0 ≤ hn ≤ 1, such that hn ↗ 1 on Rn, and ||Γ(hn, hn)||∞ → 0, as n→∞, and
letting n→ +∞, ∫

Rn
φ0(f)Γ(f, f)dµ = 0.

As a consequence, since µ charges the open sets, if f 6= 0, Γ(f, f) = 0. Since
f = 1

λLf , we conclude that f = 0. 2

We are now in position to prove the main result of this section. For 1 < p <
+∞, be denote by L(p) the closure in Lpµ(Rn,R) of the operator L, originally
only densely defined on Cc(Rn,R).

Proposition 4.43. The operator L(p) is the generator of a strongly continuous

contraction semigroup (P
(p)
t )t≥0 on Lpµ(Rn,R). Moreover, for 1 < p ≤ q < +∞

and f ∈ Lpµ(Rn,R) ∩ Lqµ(Rn,R),

P
(p)
t f = P

(q)
t f.

Proof. We apply Corollary 4.41. We have to show that:

• L(p) is dissipative;

• For λ > 0, the range of the operator λId− L(p) is Lpµ(Rn,R).

We first check that L(p) is dissipative. Since it is easily seen that the closure
of a dissipative operator is dissipative, we have to check that L is dissipative
on Cc(Rn,R).

Let f ∈ Cc(Rn,R) and

g =
1

‖f‖p/q
Lpµ(Rn,R)

|f |p−2f

where 1
p + 1

q = 1. We have:

• ‖g‖Lqµ(Rn,R) = ‖f‖Lpµ(Rn,R);

•
∫
Rn gfdµ = ‖f‖2

Lpµ(Rn,R)
.
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Since Lqµ(Rn,R) is the dual space of Lpµ(Rn,R), it remains to prove that∫
Rn gLfdµ ≤ 0. For ε > 0, let

Φε(x) = (x2 + ε2)
p
2−1x.

We have∫
Rn

Φε(f)Lfdµ = −
∫
Rn

Γ(Φε(f), f)dµ = −
∫
Rn

Φ′ε(f)Γ(f, f)dµ ≤ 0.

From the Lebesgue dominated convergence theorem applied when ε → 0, this
implies ∫

Rn
|f |p−2fLfdµ ≤ 0.

As a conclusion, L is dissipative on Cc(Rn,R) and L(p) is dissipative on its
domain.

We now show that for λ > 0, the range of the operator λId − L(p) is
Lpµ(Rn,R). If not, we could find a non zero g ∈ Lqµ(Rn,R), 1

p + 1
q = 1 such

that, in the sense of distributions,

Lg = λg.

But, according to Lemma 4.42, the above equation implies g = 0. The range
of the operator λId− L(p) is therefore Lpµ(Rn,R).

We conclude from Corollary 4.41, that L(p) is the generator of a contraction

semigroup (P
(p)
t )t≥0 on Lpµ(Rn,R).

We finally show that for 1 < p ≤ q < +∞, (P
(p)
t )t≥0 and (P

(q)
t )t≥0 coincide

on Lpµ(Rn,R) ∩ Lqµ(Rn,R). Let f ∈ Lpµ(Rn,R) ∩ Lqµ(Rn,R). For λ > 0, the
function

g = (λId− L(p))−1f − (λId− L(q))−1f

is a function that belongs to Lpµ(Rn,R) + Lqµ(Rn,R) and that satisfies in the
sense of distributions

Lg = λg.

From Lemma 4.42, we get g = 0. As a consequence for every λ > 0,

(λId− L(p))−1f = (λId− L(q))−1f.

This implies that for t ≥ 0, P
(p)
t f = P

(q)
t f (See Exercise 4.39). 2

Exercise 4.44. Show that on L2
µ(Rn,R), the semigroup (P

(2)
t )t≥0 coincides

with the semigroup (Pt)t≥0 that was constructed with the spectral theorem (You
may use Exercise 4.39).
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Remark 4.45. Let us observe that the Hille-Yosida methods fail in the limiting
cases p = 1, p = +∞.

Since, (P
(p)
t )t≥0 and (P

(q)
t )t≥0 coincide on Lpµ(Rn,R) ∩ Lqµ(Rn,R), there is

no ambiguity and we can safely remove the superscript (p) from (P
(p)
t )t≥0. So

that we can use only the notation (Pt)t≥0, but will precise on which space it
is defined if there is ambiguity. The following duality lemma is then easy to
prove.

Lemma 4.46. Let f ∈ Lpµ(Rn,R) and let g ∈ Lqµ(Rn,R), with 1
p + 1

q = 1. For
t ≥ 0, ∫

Rn
(Ptf)gdµ =

∫
Rn

(Ptg)fdµ.

Proof. Let us first assume that g ∈ Cc(Rn,R). The linear form Φ : Lpµ(Rn,R)→
R, f →

∫
Rn(Ptf)gdµ −

∫
Rn(Ptg)fdµ is continuous and vanishes on the dense

subspace Cc(Rn,R), it is therefore zero on Lpµ(Rn,R). This proves that for
f ∈ Lpµ(Rn,R) and g ∈ Cc(Rn,R),∫

Rn
(Ptf)gdµ =

∫
Rn

(Ptg)fdµ.

The same density argument applied on the linear form g →
∫
Rn(Ptf)gdµ −∫

Rn(Ptg)fdµ provides the expected result. 2

6 Diffusion semigroups as solutions of a parabolic Cauchy
problem

In this section, we connect the semigroup associated to a diffusion operator L
to the parabolic following Cauchy problem:

∂u

∂t
= Lu, u(0, x) = f(x).

As before, let L be a elliptic diffusion operator with smooth coefficients on Rn,
such that

• There is a Borel measure µ, symmetric for L on Cc(Rn,R);

• There exists an increasing sequence hn ∈ Cc(Rn,R), 0 ≤ hn ≤ 1, such
that hn ↗ 1 on Rn, and ||Γ(hn, hn)||∞ → 0, as n→∞.

Proposition 4.47. Let f ∈ Lpµ(Rn,R), 1 ≤ p ≤ ∞, and let

u(t, x) = Ptf(x), t ≥ 0, x ∈ Rn.

Then u is smooth on (0,+∞)× Rn and is a solution of the Cauchy problem

∂u

∂t
= Lu, u(0, x) = f(x).
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Proof. For φ ∈ Cc((0,+∞)× Rn,R), we have

∫
Rn×R

((
− ∂

∂t
− L

)
φ(t, x)

)
u(t, x)dµ(x)dt

=

∫
R

∫
Rn

((
− ∂

∂t
− L

)
φ(t, x)

)
Ptf(x)dxdt

=

∫
R

∫
Rn
Pt

((
− ∂

∂t
− L

)
φ(t, x)

)
f(x)dxdt

=

∫
R

∫
Rn
− ∂

∂t
(Ptφ(t, x)f(x)) dxdt

=0.

Therefore u is a weak solution of the equation ∂u
∂t = Lu. Since we already know

that u is smooth it is also a strong solution. 2

We now address the uniqueness question.

Proposition 4.48. Let v(x, t) be a non negative function such that

∂v

∂t
≤ Lv, v(x, 0) = 0,

and such that for every t > 0,

‖v(·, t)‖Lpµ(Rn,R) < +∞,

where 1 < p < +∞. Then v(x, t) = 0.

Proof. Let x0 ∈ Rn and h ∈ Cc(Rn,R). Since v is a subsolution with the zero
initial data, for any τ ∈ (0, T ),∫ τ

0

∫
Rn
h2(x)vp−1(x, t)Lv(x, t)dµ(x)dt

≥
∫ τ

0

∫
Rn
h2(x)vp−1 ∂v

∂t
dµ(x)dt

=
1

p

∫ τ

0

∂

∂t

(∫
Rn
h2(x)vpdµ(x)

)
dt

=
1

p

∫
Rn
h2(x)vp(x, τ)dµ(x).

On the other hand, integrating by parts yields∫ τ

0

∫
Rn
h2(x)vp−1(x, t)Lv(x, t)dµ(x)dt

=−
∫ τ

0

∫
Rn

2hvp−1Γ(h, v)dµdt−
∫ τ

0

∫
Rn
h2(p− 1)vp−2Γ(v)dµdt.
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Observing that

0 ≤

(√
2

p− 1
Γ(h)v −

√
p− 1

2
Γ(v)h

)2

≤ 2

p− 1
Γ(h)v2 + 2Γ(h, v)hv +

p− 1

2
Γ(v)h2,

we obtain the following estimate.∫ τ

0

∫
Rn
h2(x)vp−1(x, t)Lv(x, t)dµ(x)dt

≤
∫ τ

0

∫
Rn

2

p− 1
Γ(h)vpdµdt−

∫ τ

0

∫
Rn

p− 1

2
h2vp−2Γ(v)dµdt

=

∫ τ

0

∫
Rn

2

p− 1
Γ(h)vpdµdt− 2(p− 1)

p2

∫ τ

0

∫
Rn
h2Γ(vp/2)dµdt.

Combining with the previous conclusion we obtain ,∫
Rn
h2(x)vp(x, τ)dµ(x) +

2(p− 1)

p

∫ τ

0

∫
Rn
h2Γ(vp/2)dµdt

≤ 2p

(p− 1)
‖Γ(h)‖2∞

∫ τ

0

∫
Rn
vpdµdt.

By using the previous inequality with an increasing sequence hn ∈ Cc(Rn,R),
0 ≤ hn ≤ 1, such that hn ↗ 1 on Rn, and ||Γ(hn, hn)||∞ → 0, as n→∞, and
letting n→ +∞, we obtain

∫
Rn v

p(x, τ)dµ(x) = 0 thus v = 0. 2

As a consequence of this result, any solution in Lpµ(Rn,R), 1 < p < +∞
of the heat equation ∂u

∂t = Lu is uniquely determined by its initial condition,
and is therefore of the form u(t, x) = Ptf(x) (apply the above lemma with the
subsolution |u|). We stress that without further conditions, this result fails
when p = 1 or p = +∞.

7 The Dirichlet semigroup

In this section we will construct the Dirichlet semigroup associated to a sym-
metric diffusion operator which is given on some a relatively compact domain
of Rn. A later application of this construction will be the proof of the existence
of a continuous Markov process associated with the given symmetric diffusion
operator.

Let L be an elliptic diffusion operator on Rn with smooth coefficients. We
assume that L, defined on Cc(Rn,R), is symmetric with respect to a measure
with smooth and positive density µ. Let Ω ⊂ Rn be a non empty open set
whose closure Ω̄ is compact and whose boundary ∂Ω is smooth. We recall that
the following Green’s identity holds for L (see for instance [?]):
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Proposition 4.49 (Green’s identity). There exists a never vanishing first order
differential operator ν defined on ∂Ω such that for every C2 functions f, g : Ω̄→
R, ∫

Ω

fLgdµ = −
∫

Ω

Γ(f, g)dµ+

∫
∂Ω

f(νg)dµS ,

where, as usual, Γ(f, g) = 1
2 (L(fg)−fLg−gLf) and µS is the surface measure

induced by µ on ∂Ω

The basic result to construct the Dirichlet semigroup associated to L on Ω
is the following fact.

Proposition 4.50. The operator L is essentially self-adjoint on the set

C∞0 (Ω̄) = {u : Ω̄→ R, u smooth on Ω̄, u = 0 on ∂Ω}.

Proof. According to Lemma 4.9, it is enough to prove that

Ker(−L∗ + Id) = {0}.

Let f ∈ Ker(−L∗+ Id) = {0}. Since C∞0 (Ω̄) contains the space of smooth and
compactly supported functions inside Ω, we have in the sense of distributions
Lf = f . By ellipticity of L, it implies that f is smooth in Ω. From Green’s
identity, we now have for g ∈ C∞0 (Ω̄)∫

Ω

fLgdµ−
∫

Ω

gLfdµ+

∫
∂Ω

f(νg)dµS .

Since f ∈ D(L∗), the square of the right hand side must be controlled, for every
g, by ‖g‖2

L2
µ(Ω̄,R)

. This is only possible when f = 0 on ∂Ω. Thus, f ∈ C∞0 (Ω̄).

Since Lf = f , from Green’s identity, we have∫
Ω

f2dµ =

∫
Ω

fLfdµ = −
∫

Ω

Γ(f, f)dµ ≤ 0.

This implies f = 0 and, as a conclusion, L is essentially self-adjoint on C∞0 (Ω̄).
2

The self-adjoint extension of the previous proposition is called the Dirichlet
extension of L on Ω and shall be denoted by LΩ. The semigroup generated by
LΩ is called the Dirichlet semigroup and denoted by (PΩ

t )t≥0. By using the
same Sobolev embedding techniques as in the previous sections (see Theorems
4.20 and 4.23), it is seen that the semigroup PΩ

t has a smooth heat kernel
pΩ(t, x, y). It is then easy to see that for f ∈ L2

µ(Ω̄,R), PΩ
t f ∈ C∞0 (Ω̄), t > 0.

In particular if x or y are on ∂Ω, then pΩ(t, x, y) = 0, t > 0. This also implies
that PΩ

t 1 6= 1, that is PΩ
t is a strictly sub-Markov semigroup.

It is important to observe that LΩ is not the unique self-adjoint extension
of L on the space of smooth and compactly supported functions inside Ω.



132 4 Symmetric diffusion semigroups

The Neumann extension presented in the following section is also particularly
important.

It turns out that the compactness of Ω̄ implies the compactness of the
semigroup PΩ

t (see Appendix A for further details on compact operators).

Proposition 4.51. For t > 0 the operator PΩ
t is a compact operator on the

Hilbert space L2
µ(Ω̄,R). It is moreover trace class and

Tr(PΩ
t ) =

∫
Ω

pΩ(t, x, x)dµ(x).

Proof. From the existence of the heat kernel, we have

PΩ
t f(x) =

∫
Ω

pΩ(t, x, y)f(y)dµ(y).

But from the compactness of Ω̄, and the continuity of p(t, ·, ·) on Ω̄ × Ω̄, we
have ∫

Ω

∫
Ω

pΩ(t, x, y)2dµ(x)dµ(y) < +∞.

Therefore, from the Theorem 7.54 in the Appendix A

PΩ
t : L2

µ(Ω̄,R)→ L2
µ(Ω̄,R)

is a Hilbert-Schmidt operator. It is thus in particular a compact operator.
Since PΩ

t = PΩ
t/2P

Ω
t/2, PΩ

t is a product of two Hilbert-Schmidt operators.
It is therefore a class trace operator and,

Tr(PΩ
t ) =

∫
Ω

∫
Ω

pΩ(t/2, x, y)pΩ(t/2, y, x)dµ(x)dµ(y).

We conclude then by applying the Chapman-Kolmogorov relation that

Tr(PΩ
t ) =

∫
Ω

pΩ(t, x, x)dµ(x).

2

We have the following expansion of the Dirichlet heat kernel:

Theorem 4.52. There exists a complete orthonormal basis (φn)n≥1 of L2
µ(Ω̄,R),

consisting of eigenfunctions of −L, with φn ∈ C∞0 (Ω̄) having an eigenvalue λn
with finite multiplicity and

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · ↗ +∞.

Moreover, for t > 0, x, y ∈ Ω̄,

pΩ(t, x, y) =

+∞∑
n=1

e−λntφn(x)φn(y),

where the convergence is absolute and uniform for each t > 0.
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Proof. Let t > 0. From the Hilbert-Schmidt theorem (see Theorem 7.50 in
Appendix A), for the non negative self adjoint compact operator PΩ

t , there ex-
ists a complete orthonormal basis (φn(t))n≥1 of L2

µ(Ω̄,R) and a non increasing
sequence αn(t) ≥ 0, αn(t)↘ 0 such that

PΩ
t φn(t) = αn(t)φn(t).

The semigroup property PΩ
t+s = PΩ

t PΩ
s implies first that for k ∈ N, k ≥ 1,

φn(k) = φn(1), αn(k) = αn(1)k.

The same result is then seen to hold for k ∈ Q, k > 0 and finally for k ∈ R,
due to the strong continuity of the semigroup. Since the map t→ ‖PΩ

t ‖L2
µ(Ω̄,R)

is decreasing, we deduce that αn(1) ≤ 1. Thus, there is a λn ≥ 0 such that

αn(1) = e−λn .

As a conclusion, there exists a complete orthonormal basis (φn)n≥1 of L2
µ(Ω̄,R),

and a sequence λn satisfying

0 ≤ λ1 ≤ λ2 ≤ · · · ↗ +∞,

such that
Ptφn = e−λntφn.

If f ∈ L2
µ(Ω̄,R) is such that PΩ

t f = f , it is straightforward that f ∈ D(LΩ)
and that LΩf = 0, so that f = 0. Therefore we have λ1 > 0.

Since PΩ
t φn = e−λntφn, by differentiating as t → 0 in L2

µ(Ω̄,R), we obtain
furthermore that φn ∈ D(LΩ) and that LΩφn = −λnφn. By ellipticity of L, we
deduce that φn ∈ C∞0 (Ω̄).

The family (x, y) → φn(x)φm(y) forms an orthonormal basis of L2
µ⊗µ(Ω̄ ×

Ω̄,R). We therefore have a decomposition in L2
µ⊗µ(Ω̄× Ω̄,R),

pΩ(t, x, y) =
∑

m,n∈M
cmnφm(x)φn(y).

Since pΩ(t, ·, ·) is the kernel of the symmetric semigroup PΩ
t , it is then straight-

forward that for m 6= n, cmn = 0 and that cnn = e−λnt. Therefore in L2
µ(Ω̄,R),

pΩ(t, x, y) =

+∞∑
n=1

e−λntφn(x)φn(y).

The continuity of pΩ, together with the positivity of PΩ
t imply, via Mercer’s

theorem that actually, the above series is absolutely and uniformly convergent
for t > 0. 2
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As we stressed it in the statement of the theorem, in the decomposition

pΩ(t, x, y) =

+∞∑
n=1

e−λntφn(x)φn(y),

the eigenvalue λn is repeated according to its multiplicity. It is often useful to
rewrite this decomposition in the form

pΩ(t, x, y) =

+∞∑
n=1

e−αnt
dn∑
k=1

φnk (x)φnk (y),

where the eigenvalue αn is not repeated, that is

0 < α1 < α2 < · · ·

In this decomposition, dn is the dimension of the eigenspace Vn corresponding
to the eigenvalue αn and (φnk )1≤k≤dn is an orthonormal basis of Vn. If we
denote,

Kn(x, y) =

dn∑
k=1

φnk (x)φnk (y),

then Kn is called the reproducing kernel of the eigenspace Vn. It satisfies the
following properties whose proofs are let to the reader:

Proposition 4.53.

• Kn does not depend on the choice of the basis (φnk )1≤k≤dn ;

• If f ∈ Vn, then
∫
MKn(x, y)f(y)dµ(y) = f(x).

We finally observe that from the very definition of the reproducing kernels,
we have

pΩ(t, x, y) =

+∞∑
n=1

e−αntKn(x, y).

Exercise 4.54.

1. Let f ∈ L2
µ(Ω̄,R). Show that uniformly on Ω̄, when t→ +∞, PΩ

t f → 0.

2. Let f ∈ C∞0 (Ω̄). Show that uniformly on Ω̄, when t→ 0, PΩ
t f → f .

Exercise 4.55. Show that if K is a compact subset of Ω,

lim
t→0

sup
x∈K

1

t
(PΩ

t 1B(x,ε)c∩Ω)(x) = 0.
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8 The Neumann semigroup

In this section we consider another semigroup which is canonically associated
to diffusion operators on sub-domains of Rn: The Neumann semigroup. The
difference with respect to the Dirichlet semigroup is the boundary condition.

The framework is identical to the framework of the previous section. Let L
be an elliptic diffusion operator on Rn with smooth coefficients. We assume that
L, defined on Cc(Rn,R), is symmetric with respect to a measure with smooth
and positive density µ. Let Ω ⊂ Rn be a non empty open set whose closure
Ω̄ is compact and whose boundary ∂Ω is smooth. We list the main results
concerning the Neumann semigroup but leave the arguments as an exercise to
the reader since the proofs are almost identical to the ones of the previous
section.

Proposition 4.56. The operator L is essentially self-adjoint on the set

C∞ν (Ω̄) = {u : Ω̄→ R, u smooth on Ω̄, νu = 0 on ∂Ω},

where, as before, ν denotes the vector field in the Green’s formula Proposi-
tion 4.49. The self-adjoint extension of L on that set is called the Neumann
extension of L and will be denoted by LΩ,ν .

The semigroup generated by LΩ,ν is called the Neumann semigroup and we

will denote it by (PΩ,ν
t )t≥0. The semigroup PΩ,ν

t has a smooth heat kernel
pΩ,ν(t, x, y) and for f ∈ L2

µ(Ω̄,R), PΩ
t f ∈ C∞ν (Ω̄), t > 0. The main differ-

ence with the Dirichlet semigroup is that the Neumann semigroup is a Markov
semigroup, that is PΩ,ν

t 1 = 1. It comes from the fact that 1 ∈ D(LΩ,ν).

Proposition 4.57. For t > 0 the operator PΩ,ν
t is a compact operator on the

Hilbert space L2
µ(Ω̄,R). It is moreover trace class and

Tr(PΩ,ν
t ) =

∫
Ω

pΩ,ν(t, x, x)dµ(x).

Theorem 4.58. There exists a complete orthonormal basis (ψn)n≥1 of L2
µ(Ω̄,R),

consisting of eigenfunctions of −L, with ψn ∈ C∞ν (Ω̄) having an eigenvalue λn
with finite multiplicity and ψ1 = 1√

µ(Ω)
,

0 = λ1 < λ2 ≤ · · · ≤ λn ≤ · · · ↗ +∞.

Moreover, for t > 0, x, y ∈ Ω̄,

pΩ,ν(t, x, y) =

+∞∑
n=1

e−λntψn(x)ψn(y),

where the convergence is absolute and uniform for each t > 0.
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Exercise 4.59.

1. Let f ∈ L2
µ(Ω̄,R). Show that uniformly on Ω̄, when t → +∞, PΩ,ν

t f →
1

µ(Ω)

∫
Ω
fdµ.

2. Let f ∈ C∞ν (Ω̄). Show that uniformly on Ω̄, when t→ 0, PΩ,ν
t f → f .

Exercise 4.60. Show that if K is a compact subset of Ω,

lim
t→0

sup
x∈K

1

t
(PΩ,ν

t 1B(x,ε)c∩Ω)(x) = 0.

9 Symmetric diffusion processes

Our goal in this section will be to associate to a symmetric and elliptic diffusion
operator L a somehow canonical continuous Markov process. In general, as
we have seen, L does not generate a Markov semigroup but a sub-Markov
semigroup. The corresponding process will thus be a sub-Markov process (see
the end of Section 1 in Chapter 3 for a definition).

Let L be an elliptic diffusion operator on Rn with smooth coefficients. We
assume that L, defined on Cc(Rn,R), is symmetric with respect to a measure µ
which has a smooth and positive density with respect to the Lebesgue measure.

Proposition 4.61 (Neumann process). Let Ω ⊂ Rn be a non empty open set
whose closure Ω̄ is compact and whose boundary ∂Ω is smooth. For every x ∈ Ω,
there exists a continuous Markov process (Xx

t )t≥0 with semigroup (PΩ,ν
t )t≥0

(Neumann semigroup) such that Xx
0 = x. Moreover, for every f ∈ Cc(Ω,R),

the process

f(Xx
t )−

∫ t

0

Lf(Xx
s )ds

is a martingale.

Proof. We can use the same arguments as in the proofs of Theorem 3.28, Propo-
sition 3.30 and Proposition 3.36. 2

Proposition 4.62 (Dirichlet process). Let Ω ⊂ Rn be a non empty open set
whose closure Ω̄ is compact and whose boundary ∂Ω is smooth. For every
x ∈ Ω, there exists a continuous sub-Markov process (Xx

t )t≥0 with semigroup
(PΩ
t )t≥0 (Dirichlet semigroup) and extinction time eΩ(x) = inf{t ≥ 0, Xx

t ∈
∂Ω}. Moreover, for every f ∈ Cc(Ω,R), the process

f(Xx
t )−

∫ t

0

Lf(Xx
s )ds, t < eΩ(x)

is a martingale.
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Proof. Let O be a non empty open set whose closure Ō is compact and whose
boundary ∂O is smooth. We also assume that Ω ⊂ O. Let x ∈ Ω and let
(Y xt )t≥0 be the Neumann process in O started at x. Let Tx = inf{t ≥ 0, Y xt ∈
∂Ω} and consider the killed process

Xx
t =

{
Y xt , t ≤ Tx
?, t > Tx.

It is easily seen that (Xx
t )t≥0 is a sub-Markov process with semigroup

Qtf(x) = E(f(Xx
t )1t<Tx).

Moreover, for every f ∈ Cc(O,R), the process

f(Y xt )−
∫ t

0

Lf(Y xs )ds

is a martingale. Let now f be a smooth function on Ω such f and Lf vanish
on ∂Ω. From the Doob’s stopping theorem, we have

E

(
f(Y xt∧Tx)−

∫ t∧Tx

0

Lf(Y xs )ds

)
= f(x)

But,

E
(
f(Y xt∧Tx)

)
= E (f(Xx

t )1t<Tx)

and

E

(∫ t∧Tx

0

Lf(Y xs )ds

)
= E

(∫ t

0

Lf(Xx
s )1s<Txds

)
,

thus we obtain

Qtf(x) = f(x) +

∫ t

0

QsLf(x)ds.

Applying this with an eigenfunction Ψn of the Dirichlet Laplacian LΩ, we get
that

QtΨn = Ψn − λn
∫ t

0

QsΨnds.

This implies QtΨn = e−λntΨn. Using then the spectral decomposition of the
Dirichlet semigroup PΩ

t we easily conclude that, actually, Qt = PΩ
t . 2

With these two preliminaries in hands, we are now in position to prove the
main result of this section.
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Theorem 4.63. For every x ∈ Rn, there exists a continuous sub-Markov pro-
cess (Xx

t )t≥0, such that Xx
0 = x, a.s. and for every f ∈ Cc(Rn,R), the process

f(Xx
t )−

∫ t

0

Lf(Xx
s )ds, t < e(x),

is a martingale. If L is moreover essentially self-adjoint on Cc(Rn,R), then
(Xx

t )t≥0 admits the semigroup generated by L as a transition semigroup.

Proof. Let x ∈ Rn. Let us denote by Bn = B(x, n) the open ball with center
x and radius n. Consider now independent continuous sub-Markov processes
(Xy,n

t )t≥0,y∈Bn , n ≥ 1, such that the transition semigroup of (Xy,n
t )t≥0 is the

Dirichlet semigroup PBn
t and Xy,n

0 = y. Let

T1 = inf{t ≥ 0, Xx,1
t ∈ ∂B1}

and
X1
∂B1

= lim
t→T1

Xx,1
t .

We define then by induction

Tn = inf

{
t ≥ 0, X

Xn−1
∂Bn−1

,n

t ∈ ∂Bn

}
and

Xn
∂Bn = lim

t→Tn
X
Xn−1
∂Bn−1

,n

t .

We finally define the sub-Markov process (Xx
t )t≥0 as follows: For 0 ≤ t < T1,

Xx
t = X1,x

t , and for Tn ≤ t < Tn, Xt = X
n+1,Xn∂Bn
t . By the very construction

of (Xx
t )t≥0, it is clear that it is a continuous sub-Markov process such that for

every n ≥ 1,
Tn = inf{t ≥ 0, Xx

t ∈ ∂Bn},
and such that the killed process defined by

X̃t =

{
Xx
t , t < Tn

?, t ≥ Tn

is a sub-Markov process with semigroup PBn
t . In particular, for every f ∈

Cc(Bn,R), the process

f(Xx
t )−

∫ t

0

Lf(Xx
s )ds, t < Tn,

is a martingale. This easily implies that for every f ∈ Cc(Rn,R), the process

f(Xx
t )−

∫ t

0

Lf(Xx
s )ds, t < e(x), (4.5)
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is a martingale. This proves the first part of the theorem.
Let us now assume that L is moreover essentially self-adjoint on Cc(Rn,R).

Let us denote by Qt the transition semigroup of (Xx
t )t≥0. The construction of

(Xx
t )t≥0 shows that Qt is limit in L2

µ(Rn,R) of the self-adjoint operators PBn
t .

This implies that Qt is a contraction semigroup in L2
µ(Rn,R). Let L̄ be the

generator of this semigroup. By using the martingale (4.5), we easily see that
the domain of L̄ contains Cc(Rn,R) and that for f ∈ Cc(Rn,R),

L̄f = Lf.

The operator L̄ is therefore the unique self-adjoint extension of L. 2

Notes and Comments

Section 1. For a detailed account on the theory of self-adjointness on Hilbert
spaces we refer the reader to the books by Reed and Simon Vol. I, [?] and
Vol. II [?]. The criterion for essential self-adjointness given in Proposition 4.11
appears in a note by Bakry [?] and relies on the proof by Strichartz [?] that the
Laplace-Beltrami operator on a complete Riemannian manifold is essentially
self-adjoint.

Section 2. The existence of the heat kernel can also be proved by using
the parametrix method, see the book by Friedman [?]. Our method that relies
on a Sobolev embedding theorem has the advantage to extend to more general
operators like subelliptic operators.

Section 3. The fact that the Kato inequality for the generator is equiv-
alent to the positivity preserving property of the corresponding contraction
semigroup is pointed out by Simon in [?] and relies on the theory of Dirichlet
forms developed by Beurling and Deny in [?]. Dirichlet forms provide an ab-
stract framework which allows to generalize some of the results of this section
to much more general situations, see for instance Sturm [?] for the analy-
sis of Dirichlet forms on metric spaces. We refer the reader to the book by
Fukushima-Oshima-Takeda [?] for an extensive account on the general theory
of Dirichlet forms and to the Chapter 1 of the book by E.B. Davies [?] for an
introduction.

Section 4. The Riesz-Thorin theorem was first proved by Riesz in [?] but
the idea to use complex methods to prove the theorem goes back to his student
Thorin. An extension of this theorem to analytic families is due to Stein [?].

Section 5. The Hille-Yosida theorem (Theorem 4.38) was independently
proved by Hille in [?], [?] and Yosida in [?], [?]. The construction of the heat



140 4 Symmetric diffusion semigroups

semigroup by using Hille-Yosida theory follows the approach of Strichartz [?]
but is extended here in the context of general elliptic operators.

Section 6. The connection between partial differential equations and semi-
group theory goes back to Hadamard [?], [?], [?] who observed the semigroup
property for solutions of the Cauchy problem. However semigroup theory
was not applied systematically to partial differential equations until Hille and
Yosida developed the analytical tools in the late 1940’s. One of the seminal
fundamental papers applying semigroup techniques to diffusion equations is the
paper by Feller [?].

Section 9. By using the theory of Dirichlet forms, it is possible to greatly
generalize Theorem 4.63. We refer the interested reader to the book by Fukushima-
Oshima-Takeda [?] for the construction of continuous Markov processes asso-
ciated with local Dirichlet forms. We also mention the reference [?].



Chapter 5

Itô calculus

The main goal of the chapter is to construct an integral with respect to the
Brownian motion. This integral may not be defined as a usual Riemann-
Stieltjes integral because Brownian paths are almost surely of infinite variation.
However, by using the full strength of probability methods, it is possible to de-
velop a natural and fruitful integration theory for stochastic processes. Once
the stochastic integral is constructed, we we will prove the change of variable
for this integral: The Döblin-Itô formula. Several applications of the Döblin-Itô
formula are then investigated.

1 Variation of the Brownian paths

We first study some properties of the Brownian paths that will be useful to
develop an integral with respect to Brownian motion. As a first step, we prove
that Brownian paths almost surely have an infinite variation,

If
∆n[0, t] = {0 = tn0 ≤ tn1 ≤ ... ≤ tnn = t}

is a subdivision of the time interval [0, t], we denote by

| ∆n[0, t] |= max{| tnk+1 − tnk |, k = 0, ..., n− 1},

the mesh of this subdivision.

Proposition 5.1. Let (Bt)t≥0 be a standard Brownian motion. Let t ≥ 0. For
every sequence ∆n[0, t] of subdivisions such that

lim
n→+∞

| ∆n[0, t] |= 0,

the following convergence takes place in L2 (and thus in probability),

lim
n→+∞

n∑
k=1

(
Btnk −Btnk−1

)2

= t.

As a consequence, almost surely, Brownian paths have an infinite variation on
the time interval [0, t].

Proof. Let us denote

Vn =

n∑
k=1

(
Btnk −Btnk−1

)2

.
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Thanks to the stationarity and the independence of Brownian increments, we
have:

E
(
(Vn − t)2

)
=E

(
V 2
n

)
− 2tE (Vn) + t2

=

n∑
j,k=1

E
((

Btnj −Btnj−1

)2 (
Btnk −Btnk−1

)2
)
− t2

=

n∑
k=1

E
((

Btnj −Btnj−1

)4
)

+ 2

n∑
1≤j<k≤n

E
((

Btnj −Btnj−1

)2 (
Btnk −Btnk−1

)2
)
− t2

=

n∑
k=1

(tnk − tnk−1)2E
(
B4

1

)
+ 2

n∑
1≤j<k≤n

(tnj − tnj−1)(tnk − tnk−1)− t2

=3

n∑
k=1

(tnj − tnj−1)2 + 2

n∑
1≤j<k≤n

(tnj − tnj−1)(tnk − tnk−1)− t2

=2

n∑
k=1

(tnk − tnk−1)2

≤2t | ∆n[0, t] |→n→+∞ 0.

Let us now prove that, as a consequence of this convergence, the paths of
the process (Bt)t≥0 almost surely have an infinite variation on the time interval
[0, t]. It suffices to prove that there exists a sequence of subdivisions ∆n[0, t]
such that almost surely

lim
n→+∞

n∑
k=1

| Btnk −Btnk−1
|= +∞.

Reasoning by absurd, let us assume that the supremum on all the subdivisions
of the time interval [0, t] of the sums

lim
n→+∞

n∑
k=1

| Btnk −Btnk−1
|

may be bounded from above by some positive M . From the above result,
since the convergence in probability implies the existence of an almost surely
convergent subsequence, we can find a sequence of subdivisions ∆n[0, t] whose
mesh tends to 0 and such that almost surely,

lim
n→+∞

n∑
k=1

(
Btnk −Btnk−1

)2

= t.
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We get then

n∑
k=1

(
Btnk −Btnk−1

)2

≤M sup
1≤k≤n

| Btnk −Btnk−1
|→n→+∞ 0,

which is clearly absurd. 2

Exercise 5.2. Let (Bt)t≥0 be a Brownian motion. Show that for t ≥ 0, almost
surely

lim
n→+∞

2n∑
k=1

(
B kt

2n
−B (k−1)t

2n

)2

= t.

2 Itô integral

Since a Brownian motion (Bt)t≥0 does not have absolutely continuous paths, we
can not directly use the theory of Riemann-Stieltjes integrals to give a sense to
integrals like

∫ t
0

ΘsdBs for every continuous stochastic process (Θs)s≥0. How-

ever, if (Θs)s≥0 is regular enough in the Hölder sense, then
∫ t

0
ΘsdBs can still

be constructed as a limit of Riemann sums by using the so-called Young inte-
gal. In the sequel, we shall denote by Cα(I) the space of α- Hölder continuous
functions that are defined on an interval I.

Theorem 5.3 (Young integral). Let f ∈ Cβ([0, T ]) and g ∈ Cγ([0, T ]). If
β + γ > 1, then for every subdivision ∆n[0, T ], whose mesh tends to 0, the
Riemann sums

n−1∑
i=0

f(tni )(g(tni+1)− g(tni ))

converge, when n → ∞ to a limit which is independent of the subdivision tni .

This limit is denoted
∫ T

0
fdg and called the Young’s integral of f with respect

to g.

As a consequence of the previous result, we can therefore use Young’s inte-
gral to give a sense to the integral

∫ t
0

ΘsdBs as soon as the stochastic process
(Θs)s≥0 has γ-Hölder paths with γ > 1/2. This is not satisfying enough, since

for instance the integral
∫ t

0
BsdBs is not even well defined. The alternative to

using Riemann sums and study its almost sure convergence is to take advan-
tage of the quadratic variation of the Brownian motion paths and use the full
power of probabilistic methods.

In what follows, we consider a Brownian motion (Bt)t≥0 which is defined on
a filtered probability space (Ω, (Ft)t≥0,F ,P). (Bt)t≥0 is assumed to be adapted
to the filtration (Ft)t≥0. We also assume that (Ω, (Ft)t≥0,F ,P) satisfies the
usual conditions as they were defined in Definition 1.43. These assumptions
imply in particular the following facts that we record here for later use :
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1. A limit (in L2 or in probability) of adapted processes is still adapted;

2. A modification of a progressively measurable process is still a progres-
sively measurable process.

Exercise 5.4. Let (Bt)t≥0 be a standard Brownian motion. We denote by
(FBt )t≥0 its natural filtration: FB∞ = σ(Bu, u ≥ 0) and by N the null sets of
FB∞. Show that the filtration (σ(FBt ,N ))t≥0 satisfies the usual conditions.

We denote by L2(Ω, (Ft)t≥0,P) the set of processes (ut)t≥0 that are pro-
gressively measurable with respect to the filtration (Ft)t≥0 and such that

E
(∫ +∞

0

u2
sds

)
< +∞.

Exercise 5.5. Show that the space L2(Ω, (Ft)t≥0,P) endowed with the norm

‖u‖2 = E
(∫ +∞

0

u2
sds

)
is a Hilbert space.

We now denote by E the set of processes (ut)t≥0 that may be written as:

ut =

n−1∑
i=0

Fi1(ti,ti+1](t),

where 0 ≤ t0 ≤ ... ≤ tn and where Fi is a random variable that is measurable
with respect to Fti and such that E(F 2

i ) < +∞. The set E is often called the
set of simple previsible processes. We first observe that it is straightforward to
check that

E ⊂ L2(Ω, (Ft)t≥0,P).

The following theorem provides the basic definition of the so-called Itô integral.

Theorem 5.6 (Itô integral). There is a unique linear map

I : L2(Ω, (Ft)t≥0,P)→ L2(Ω,F ,P)

such that:

1. For u =
∑n−1
i=0 Fi1(ti,ti+1] ∈ E,

I(u) =

n−1∑
i=0

Fi(Bti+1
−Bti);
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2. For u ∈ L2(Ω, (Ft)t≥0,P),

E
(
I(u)2

)
= E

(∫ +∞

0

u2
sds

)
.

The map I is called the Itô integral and for u ∈ L2(Ω, (Ft)t≥0,P), we will use
the notation

I(u) =

∫ +∞

0

usdBs.

Proof. Since L2(Ω, (Ft)t≥0,P) endowed with the norm

‖u‖2 = E
(∫ +∞

0

u2
sds

)
is a Hilbert space, from the isometries extension theorem we just have to prove
that

1. For u =
∑n−1
i=0 Fi1(ti,ti+1] ∈ E ,

E

(n−1∑
i=0

Fi(Bti+1
−Bti)

)2
 = E

(∫ +∞

0

u2
sds

)
;

2. The set E is dense in L2(Ω, (Ft)t≥0,P).

Let u =
∑n−1
i=0 Fi1(ti,ti+1] ∈ E . Due to the independence of the Brownian

motion increments, we have:

E

(n−1∑
i=0

Fi(Bti+1
−Bti)

)2


=E

 n−1∑
i,j=0

FiFj(Bti+1
−Bti)(Btj+1

−Btj )


=E

(
n−1∑
i=0

F 2
i (Bti+1

−Bti)2

)
+ 2E

 ∑
0≤i<j≤n−1

FiFj(Bti+1
−Bti)(Btj+1

−Btj )


=E

(
n−1∑
i=0

F 2
i (ti+1 − ti)

)

=E
(∫ +∞

0

u2
sds

)
.

Let us now prove that E is dense in L2(Ω, (Ft)t≥0,P). We proceed in
several steps. As a first step, let us observe that the set of progressively
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measurable bounded processes is dense in L2(Ω, (Ft)t≥0,P). Indeed, for u ∈
L2(Ω, (Ft)t≥0,P), the sequence (ut1[0,n](| ut |))t≥0 converges to u.

As a second step, we remark that if u ∈ L2(Ω, (Ft)t≥0,P) is a bounded
process, then u is a limit of bounded processes that are in L2(Ω, (Ft)t≥0,P) and
such that almost every paths are supported in a fixed compact set (consider
the sequence (ut1[0,n](t)t≥0).

As a third step, if u ∈ L2(Ω, (Ft)t≥0,P) is a bounded process such that
almost every paths are supported in a fixed compact set, then the sequence(

1
n

∫ t
t− 1

n
usds1( 1

n ,+∞)(t)
)
t≥0

is seen to converge toward u. Therefore, u is a

limit of left continuous and bounded processes that are in L2(Ω, (Ft)t≥0,P) and
such that almost every paths are supported in a fixed compact set.

Finally, it suffices to prove that if u ∈ L2(Ω, (Ft)t≥0,P) is a left continuous
and bounded process such that almost every paths are supported in a fixed
compact set, then u is a limit of processes that belong to E . This may be
proved by considering the sequence:

unt =

+∞∑
i=0

u i
n

1( in ,
i+1
n ](t).

2

Exercise 5.7. Let u, v ∈ L2(Ω, (Ft)t≥0,P), show that

E
(∫ +∞

0

usdBs

)
= 0

and

E
(∫ +∞

0

usdBs

∫ +∞

0

vsdBs

)
= E

(∫ +∞

0

usvsds

)
.

Associated with Itô’s integral, we can construct an integral process, its
fundamental property is that it is a continuous martingale.

Proposition 5.8. Let u ∈ L2(Ω, (Ft)t≥0,P) . The process(∫ t

0

usdBs

)
t≥0

=

(∫ +∞

0

us1[0,t](s)dBs

)
t≥0

is a martingale with respect to the filtration (Ft)t≥0 that admits a continuous
modification.

Proof. We first prove the martingale property. If

ut =

n−1∑
i=0

Fi1(ti,ti+1](t)
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is in E , then for every t ≥ s,

E
(∫ t

0

uvdBv | Fs
)

= E

(
n−1∑
i=0

Fi(Bti+1∧t −Bti∧t) | Fs

)

=

n−1∑
i=0

Fi(Bti+1∧s −Bti∧s)

=

∫ s

0

uvdBv.

Thus if u ∈ E , the process(∫ t

0

usdBs

)
t≥0

=

(∫ +∞

0

us1[0,t](s)dBs

)
t≥0

is a martingale with respect to the filtration (Ft)t≥0. Since E is dense in
L2(Ω, (Ft)t≥0,P), and since it is easily checked that a limit in L2(Ω, (Ft)t≥0,P)
of martingales is still a martingale, we deduce the expected result.

We now prove the existence of a continuous version.
If u ∈ E , the continuity of the integral process easily stems from the continu-

ity of the Brownian paths. Let u ∈ L2(Ω, (Ft)t≥0,P) and let un be a sequence
in E that converges to u. From Doob’s inequality, we have for m,n ≥ 0 and
ε > 0,

P
(

sup
t≥0

∣∣∣∣∫ t

0

(uns − ums )dBs

∣∣∣∣ ≥ ε) ≤ E
(
|
∫ +∞

0
(uns − ums )dBs |2

)
ε2

≤
E
(∫ +∞

0
(uns − ums )2ds

)
ε2

.

There exists thus a sequence (nk)k≥0 such that

P
(

sup
t≥0

∣∣∣∣∫ t

0

(unk+1
s − unks )dBs

∣∣∣∣ ≥ 1

2k

)
≤ 1

2k
.

From Borel-Cantelli lemma, the sequence of processes
(∫ t

0
unks dBs

)
t≥0

con-

verges then almost surely uniformly to the process
(∫ t

0
usdBs

)
t≥0

which is

therefore continuous. 2

As a straightforward consequence of the previous proposition and Doob’s
inequalities, we obtain

Proposition 5.9. Let u ∈ L2(Ω, (Ft)t≥0,P).
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1. For every λ > 0,

P
(

sup
t≥0

∣∣∣∣∫ t

0

usdBs

∣∣∣∣ ≥ λ) ≤ E
(∫ +∞

0
u2
sds
)

λ2
;

2.

E

((
sup
t≥0

∣∣∣∣∫ t

0

usdBs

∣∣∣∣)2
)
≤ 4E

(∫ +∞

0

u2
sds

)
.

Once again, we insist on the fact that Itô’s integral is not pathwise in the
sense that for u ∈ L2(Ω, (Ft)t≥0,P), the Riemann sums

n−1∑
k=0

u kt
n

(
(B (k+1)t

n
−B kt

n

)
,

need not to almost surely converge to
∫ t

0
usdBs. However the following propo-

sition shows that under continuity assumptions we have a convergence in prob-
ability.

Proposition 5.10. Let u ∈ L2(Ω, (Ft)t≥0,P) be a continuous process. Let
t ≥ 0. For every sequence of subdivisions ∆n[0, t] such that

lim
n→+∞

| ∆n[0, t] |= 0,

the following convergence holds in probability:

lim
n→+∞

n−1∑
k=0

utnk

(
Btnk+1

−Btnk
)

=

∫ t

0

usdBs.

Proof. Let us first assume that u is bounded almost surely. We have

n−1∑
k=0

utnk

(
Btnk+1

−Btnk
)

=

∫ t

0

uns dBs,

where uns =
∑n−1
k=0 utnk 1(tnk ,t

n
k+1](s). The Itô isometry and the Lebesgue dom-

inated convergence theorem shows then that
∫ t

0
uns dBs converges to

∫ t
0
usdBs

in L2 and therefore in probability. For general u’s we can use a localization
procedure. For N ≥ 0, consider the random time

TN = inf{t ≥ 0, |ut| ≥ N}.
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We have for every ε > 0,

P

(∣∣∣∣∣
n−1∑
k=0

utnk

(
Btnk+1

−Btnk
)
−
∫ t

0

usdBs

∣∣∣∣∣ ≥ ε
)

≤P(TN ≤ t) + P

(∣∣∣∣∣
n−1∑
k=0

utnk

(
Btnk+1

−Btnk
)
−
∫ t

0

usdBs

∣∣∣∣∣ ≥ ε, TN ≥ t
)

≤P(TN ≤ t) + P

(∣∣∣∣∣
n−1∑
k=0

utnk 1|utn
k
|≤M

(
Btnk+1

−Btnk
)
−
∫ t

0

us1|us|≤MdBs

∣∣∣∣∣ ≥ ε
)
.

This easily implies the convergence in probability. 2

Exercise 5.11.

1. Show that for t ≥ 0, ∫ t

0

BsdBs =
1

2

(
B2
t − t

)
.

What is surprising in this formula ?

2. Show that when n→ +∞, the sequence

n−1∑
k=0

B (k+1)t
n

(
B (k+1)t

n
−B kt

n

)
,

converges in probability to a random variable that shall be computed.

Exercise 5.12. Show that if f : R≥0 → R is locally square integrable, that

is
∫ t

0
f2(x)dx < +∞, t ≥ 0, then the process

(∫ t
0
f(s)dBs

)
t≥0

is a Gaussian

process. Compute its mean and its covariance.

3 Square integrable martingales and quadratic variations

It turns out that stochastic integrals may be defined for other stochastic pro-
cesses than Brownian motions. The key properties that were used in the above
approach were the martingale property and the square integrability of the
Brownian motion.

As above, we consider a filtered probability space (Ω, (Ft)t≥0,F ,P) that
satisfies the usual conditions. A martingale (Mt)t≥0 defined on this space is
said to be square integrable if for every t ≥ 0, E

(
M2
t

)
< +∞.

For instance, if (Bt)t≥0 is a Brownian motion on (Ω, (Ft)t≥0,F ,P) and
if (ut)t≥0 is a process which is progressively measurable with respect to the
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filtration (Ft)t≥0 such that for every t ≥ 0, E
(∫ t

0
u2
sds
)
< +∞ then, the

process

Mt =

∫ t

0

usdBs, t ≥ 0,

is a square integrable martingale.
The most important theorem concerning continuous square integrable mar-

tingales is that they admit a quadratic variation. Before proving this theorem,
we state a preliminary lemma.

Lemma 5.13. Let (Mt)0≤t≤T be a continuous martingale such that

sup
∆n[0,T ]

n−1∑
k=0

|Mtnk+1
−Mtnk

| < +∞.

Then (Mt)0≤t≤T is constant.

Proof. We may assume M0 = 0. For N ≥ 0, let us consider the stopping time

TN = inf

{
s ∈ [0, T ], |Ms| ≥ N, sup

∆n[0,s]

n−1∑
k=0

|Mtnk+1
−Mtnk

| ≥ N

}
∧ T.

The stopped process (Mt∧TN )0≤t≤T is a martingale and therefore for s ≤ t,

E((Mt∧TN −Ms∧TN )2) = E(M2
t∧TN )− E(M2

s∧TN ).

Consider now a sequence of subdivisions ∆n[0, T ] whose mesh tends to 0. By
summing up the above inequality on the subdivision, we obtain

E(M2
TN ) =

n−1∑
k=0

(
Mtnk∧TN −Mtnk−1∧TN

)2

≤ sup |Mtnk∧TN −Mtnk−1∧TN |E

(
n−1∑
k=0

∣∣∣Mtnk∧TN −Mtnk−1∧TN

∣∣∣)
≤ N sup |Mtnk∧TN −Mtnk−1∧TN |.

By letting n→ +∞, we get E(M2
TN

) = 0. This implies MTN = 0. Letting now
N →∞, we conclude MT = 0. 2

Theorem 5.14 (Quadratic variation of a martingale). Let (Mt)t≥0 be a mar-
tingale on (Ω, (Ft)t≥0,F ,P) which is continuous and square integrable and such
that M0 = 0.There is a unique continuous and increasing process denoted
(〈M〉t)t≥0 that satisfies the following properties:

1. 〈M〉0 = 0;
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2. The process (M2
t − 〈M〉t)t≥0 is a martingale.

Actually for every t ≥ 0 and for every sequence of subdivisions ∆n[0, t] such
that

lim
n→+∞

| ∆n[0, t] |= 0,

the following convergence takes place in probability:

lim
n→+∞

n∑
k=1

(
Mtnk

−Mtnk−1

)2

= 〈M〉t.

The process (〈M〉t)t≥0 is called the quadratic variation process of (Mt)t≥0.

Proof. We first assume that the martingale (Mt)t≥0 is bounded and prove that
if ∆n[0, t] is a sequence of subdivisions of the interval [0, t] such that

lim
n→+∞

| ∆n[0, t] |= 0,

then the limit

lim
n→+∞

n∑
k=1

(
Mtnk

−Mtnk−1

)2

exists in L2 and thus in probability.
Toward this goal, we introduce some notations. If ∆[0, T ] is a subdivision

of the time interval [0, T ] and if (Xt)t≥0 is a stochastic process, then we denote

S
∆[0,T ]
t (X) =

k−1∑
i=0

(
Xti+1

−Xti

)2
+ (Xt −Xtk)2,

where k is such that tk ≤ t < tk+1.
An easy computation on conditional expectations shows that if (Xt)t≥0 is

a martingale, then the process

X2
t − S

∆[0,T ]
t (X), t ≤ T

is also a martingale. Also, if ∆[0, T ] and ∆′[0, T ] are two subdivisions of the
time interval [0, T ], we will denote by ∆∨∆′[0, T ] the subdivision obtained by
putting together the points ∆[0, T ] and the points of ∆′[0, T ]. Let now ∆n[0, T ]
be a sequence of subdivisions of [0, T ] such that

lim
n→+∞

| ∆n[0, T ] |= 0.

Let us show that the sequence S
∆n[0,T ]
T (M) is a Cauchy sequence in L2. Since

the process S∆n[0,T ](M) − S∆p[0,T ](M) is a martingale (as a difference of two
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martingales), we deduce that

E
((

S
∆n[0,T ]
T (M)− S∆p[0,T ]

T (M)
)2
)

=E
(
S

∆n∨∆p[0,T ]
T (S∆n[0,T ](M)− S∆p[0,T ](M))

)
≤2
(
E
(
S

∆n∨∆p[0,T ]
T (S∆n[0,T ](M))

)
+ E

(
S

∆n∨∆p[0,T ]
T (S∆p[0,T ](M))

))
.

Let us denote by sk’s the points of the subdivision ∆n ∨∆p[0, T ] and for fixed
sk, we denote by tl the point of ∆n[0, T ] which is the closest to sk and such
that tl ≤ sk ≤ tl+1. We have

S∆n[0,T ]
sk+1

(M)− S∆n[0,T ]
sk

(M) = (Msk+1
−Mtl)

2 − (Msk −Mtl)
2

= (Msk+1
−Msk)(Msk+1

+Msk − 2Mtl).

Therefore, from Cauchy-Schwarz inequality, we have

E
(
S

∆n∨∆p[0,T ]
T (S∆n[0,T ](M))

)
≤E

(
sup
k

(Msk+1
+Msk − 2Mtl)

4

)1/2

E
((

S
∆n∨∆p[0,T ]
T (M)

)2
)1/2

.

Since the martingale M is assumed to be continuous, when n, p→ +∞,

E
(

sup
k

(Msk+1
+Msk − 2Mtl)

4

)
→ 0.

Thus, in order to conclude, it suffices to prove that E
((

S
∆n∨∆p[0,T ]
T (M)

)2
)

is bounded. This fact is a consequence of the fact that M is assumed to be
bounded and we let the reader work out the details of the argument. Therefore,
in the L2 sense the following convergence holds

〈M〉t = lim
n→+∞

n∑
k=1

(
Mtnk

−Mtnk−1

)2

.

The process (M2
t −〈M〉t)t≥0 is seen to be a martingale because for every n and

T ≥ 0, the process

M2
t − S

∆n[0,T ]
t (M), t ≤ T

is a martingale. Let us now show that the obtained process 〈M〉 is a continuous
process. From Doob’s inequality, for n, p ≥ 0 and ε > 0,

P
(

sup
0≤t≤T

(
S

∆n[0,T ]
t (M)− S∆p[0,T ]

t (M)
)
> ε

)

≤
E
((

S
∆n[0,T ]
T (M)− S∆p[0,T ]

T (M)
)2
)

ε2
.
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From Borel-Cantelli lemma, there exists therefore a sequence nk such that

the sequence of continuous stochastic processes
(
S

∆nk
[0,T ]

t (M)
)

0≤t≤T
almost

surely uniformly converges to the process (〈M〉t)0≤t≤T . This proves the exis-
tence of a continuous version for 〈M〉. Finally, to prove that 〈M〉 is increasing,
it is enough to consider a an increasing sequence of subdivisions whose mesh
tends to 0. Let us now prove that 〈M〉 is the unique process such that M2−〈M〉
is a martingale. Let A and A′ be two continuous and increasing stochastic pro-
cesses such that A0 = A′0 = 0 and such that (M2

t − At)t≥0 and (M2
t − A′t)t≥0

are martingales. The process (Nt)t≥0 = (At−A′t)t≥0 is then seen to be a mar-
tingale that has a bounded variation. From the previous lemma, this implies
that (Nt)t≥0 is constant and therefore equal to 0 due to its initial condition.

We now turn to the case where (Mt)t≥0 is not necessarily bounded. Let us
introduce the sequence of stopping times:

TN = inf{t ≥ 0, |Mt| ≥ N}.

According to the previous arguments, for every N ≥ 0, there is an increasing
process AN such that (M2

t∧TN −A
N
t )t≥0 is a martingale. By uniqueness of this

process, it is clear that AN+1
t∧TN = ANt , therefore we can define a process At by

requiring that At(ω) = ANt (ω) provided that TN (ω) ≥ t. By using convergence
theorems, it is then checked that (M2

t −At)t≥0 is a martingale.
Finally, let ∆n[0, t] be a sequence of subdivisions whose mesh tends to 0.

We have for every ε > 0,

P

(∣∣∣∣∣At −
n∑
k=1

(
Mtnk

−Mtnk−1

)2
∣∣∣∣∣ ≥ ε

)

≤P(TN ≤ t) + P

(∣∣∣∣∣ANt −
n∑
k=1

(
Mtnk∧TN −Mtnk−1∧TN

)2
∣∣∣∣∣ ≥ ε

)
.

This easily implies the announced convergence in probability of the quadratic
variations to At. 2

Exercise 5.15. Let (Mt)t≥0 be a square integrable martingale on a filtered
probability space (Ω, (Ft)t≥0,F ,P). Assume that M0 = 0. If ∆[0, T ] is a sub-
division of the time interval [0, T ] and if (Xt)t≥0 is a stochastic process, we
denote

S
∆[0,T ]
t (X) =

k−1∑
i=0

(
Xti+1

−Xti

)2
+ (Xt −Xtk)2,

where k is such that tk ≤ t < tk+1. Let ∆n[0, T ] be a sequence of subdivisions
of [0, T ] such that

lim
n→+∞

| ∆n[0, T ] |= 0.
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Show that the following convergence holds in probability,

lim
n→+∞

sup
0≤t≤T

∣∣∣S∆[0,T ]
t (M)− 〈M〉t

∣∣∣ = 0.

Thus, in the previous theorem, the convergence is actually uniform on compact
intervals.

We have already pointed out that stochastic integrals with respect to Brow-
nian motion provide an example of square integrable martingale, they therefore
have a quadratic variation. The next proposition explicitly computes this vari-
ation.

Proposition 5.16. Let (Bt)t≥0 be a Brownian motion on a filtered probabil-
ity space (Ω, (Ft)t≥0,F ,P) that satisfies the usual conditions. Let (ut)t≥0be a

progressively measurable process such that for every t ≥ 0, E
(∫ t

0
u2
sds
)
< +∞.

For t ≥ 0: 〈∫ ·
0

usdBs

〉
t

=

∫ t

0

u2
sds.

Proof. Since the process
(∫ t

0
u2
sds
)
t≥0

is continuous, increasing and equals 0

when t = 0, we just need to prove that(∫ t

0

usdBs

)2

−
∫ t

0

u2
sds

is a martingale.
If u ∈ E , is a simple process, it is easily seen that for t ≥ s:

E

((∫ t

0

uvdBv

)2

| Fs

)
= E

((∫ s

0

uvdBv +

∫ t

s

uvdBv

)2

| Fs

)

= E

((∫ s

0

uvdBv

)2

| Fs

)
+ E

((∫ t

s

uvdBv

)2

| Fs

)

=

(∫ s

0

uvdBv

)2

+ E
(∫ t

s

u2
vdv | Fs

)
.

We may then conclude by using the density of E in L2(Ω, (Ft)t≥0,P). 2

As a straightforward corollary of the proposition 5.14, we immediately ob-
tain:

Corollary 5.17. Let (Mt)t≥0 and (Nt)t≥0 be two continuous square integrable
martingales on (Ω, (Ft)t≥0,F ,P) such that M0 = N0 = 0. There is a unique
continuous process (〈M,N〉t)t≥0 with bounded variation that satisfies:



3 Square integrable martingales and quadratic variations 155

1. 〈M,N〉0 = 0;

2. The process (MtNt − 〈M,N〉t)t≥0 is a martingale.

Moreover, for t ≥ 0 and for every sequence ∆n[0, t] such that

lim
n→+∞

| ∆n[0, t] |= 0,

the following convergence holds in probability:

lim
n→+∞

n∑
k=1

(
Mtnk

−Mtnk−1

)(
Ntnk −Ntnk−1

)
= 〈M,N〉t.

The process (〈M,N〉t)t≥0 is called the quadratic covariation process of (Mt)t≥0

and (Nt)t≥0.

Proof. We may actually just use the formula

〈M,N〉 =
1

4
(〈M +N〉 − 〈M −N〉) ,

as a definition of the covariation and then check that the above properties are
indeed satisfied due to Proposition 5.14. 2

Exercise 5.18. Let (B1
t )t≥0 and (B2

t )t≥0 be two independent Brownian mo-
tions. Show that

〈B1, B2〉t = 0.

In the same way that a stochastic integral with respect to Brownian motion
was constructed, a stochastic integral with respect to square integrable martin-
gales may be defined. We shall not repeat this construction, since it was done
in the Brownian motion case, but we point out the main results without proofs
and let the proofs as an exercise to the reader.

Let (Mt)t≥0 be a continuous square integrable martingale on a filtered prob-
ability space (Ω, (Ft)t≥0,F ,P) that satisfies the usual conditions. We assume
that M0 = 0. Let us denote by L2

M (Ω, (Ft)t≥0,P) the set of processes (ut)t≥0

that are progressively measurable with respect to the filtration (Ft)t≥0 and
such that

E
(∫ +∞

0

u2
sd〈M〉s

)
< +∞.

We still denote by E the set of simple and predictable processes, that is the set
of processes (ut)t≥0 that may be written as:

ut =

n−1∑
i=0

Fi1(ti,ti+1](t),



156 5 Itô calculus

where 0 ≤ t0 ≤ ... ≤ tn and where Fi is a random variable that is measurable
with respect to Fti and such that E(F 2

i ) < +∞. We define an equivalence
relation R on the set L2

M (Ω, (Ft)t≥0,P) as follows:

uRv ⇔ E
(∫ +∞

0

(us − vs)2d〈M〉s
)

= 0.

and denote by

L2
M (Ω, (Ft)t≥0,P) = L2

M (Ω, (Ft)t≥0,P)/R,

the set of equivalence classes. It is easy to check that L2
M (Ω, (Ft)t≥0,P) en-

dowed with the norm

‖u‖2 = E
(∫ +∞

0

u2
sd〈M〉s

)
,

is a Hilbert space.
The following theorems are then proved similarly as for the Brownian mo-

tion.

Theorem 5.19. There exists a unique linear map

IM : L2
M (Ω, (Ft)t≥0,P)→ L2(Ω,F ,P)

such that:

• For u =
∑n−1
i=0 Fi1(ti,ti+1] ∈ E,

I(u) =

n−1∑
i=0

Fi(Mti+1 −Mti);

• For u ∈ L2
M (Ω, (Ft)t≥0,P),

E
(
IM (u)2

)
= E

(∫ +∞

0

u2
sd〈M〉s

)
.

The map IM is called the Itô integral with respect to the continuous and square
integrable martingale (Mt)t≥0 . We denote for u ∈ L2

M (Ω, (Ft)t≥0,P),

IM (u) =

∫ +∞

0

usdMs.

In the case where (Mt)t≥0 is itself a stochastic integral with respect to Brow-
nian motion, we can express the stochastic integral with respect to (Mt)t≥0 as
an integral with respect to the underlying Brownian motion.
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Proposition 5.20. Let us assume that Mt =
∫ t

0
ΘsdBs where (Bt)t≥0 is a

Brownian motion on (Ω, (Ft)t≥0,F ,P) and where (Θt)t≥0 is a progressively

measurable process such that for every t ≥ 0, E
(∫ t

0
Θ2
sds
)
< +∞. Then

u ∈ L2
M (Ω, (Ft)t≥0,P) if and only if uΘ ∈ L2

B(Ω, (Ft)t≥0,P) and in that case
for every t ≥ 0, ∫ t

0

usdMs =

∫ t

0

usΘsdBs.

It should come as no surprise, that stochastic integrals with respect to
martingales are still martingales. This is confirmed in the next proposition.

Proposition 5.21. Let (ut)t≥0 be a stochastic process which is progressively
measurable with respect to the filtration (Ft)t≥0 and such that for every t ≥ 0,

E
(∫ t

0
u2
sd〈M〉s

)
< +∞. The process

(∫ t

0

usdMs

)
t≥0

=

(∫ +∞

0

us1[0,t](s)dMs

)
t≥0

is a square integrable martingale with respect to the filtration (Ft)t≥0 that ad-
mits a continuous modification and its qudratic variation process is〈∫ ·

0

usdMs

〉
t

=

∫ t

0

u2
sd〈M〉s.

As in the Brownian motion case, the stochastic integral with respect to a
martingale is not an almost sure limit of Riemann sums, it is however a limit
in probability.

Proposition 5.22. Let u ∈ L2
M (Ω, (Ft)t≥0,P) be a continuous stochastic pro-

cess. Let t ≥ 0. For every sequence of subdivisions ∆n[0, t] such that

lim
n→+∞

| ∆n[0, t] |= 0,

the following convergence holds in probability:

lim
n→+∞

n−1∑
k=0

utnk

(
Mtnk+1

−Mtnk

)
=

∫ t

0

usdMs.

4 Local martingales, Semimartingales and Integrators

The goal of this paragraph is to extend the domain of definition of the Itô’s in-
tegral with respect to Brownian motion. The idea is to use the fruitful concept
of localization. We will then finally be interested in the widest class of processes
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for which it is possible to define a stochastic integral satisfying natural proba-
bilistic properties. This will lead to the natural notion of semimartingales.

As before, we consider here a Brownian motion (Bt)t≥0 that is defined on a
filtered probability space (Ω, (Ft)t≥0,F ,P) that satisfies the usual conditions.

Definition 5.23. We define the space L2
loc(Ω, (Ft)t≥0,P), as the set of the

processes (ut)t≥0 that are progressively measurable with respect to the filtration
(Ft)t≥0 and such that for every t ≥ 0

P
(∫ t

0

u2
sds < +∞

)
= 1.

We first have the following fact whose proof is let as an exercise to the
reader:

Lemma 5.24. Let u ∈ L2
loc(Ω, (Ft)t≥0,P). There exists an increasing family

of stopping times (Tn)n≥0 for the filtration (Ft)t≥0 such that:

1. Almost surely,
lim

n→+∞
Tn = +∞;

2.

E

(∫ Tn

0

u2
sds

)
< +∞.

Thanks to this lemma, it is now easy to naturally define
∫ t

0
usdBs for u ∈

L2
loc(Ω, (Ft)t≥0,P). Indeed, let u ∈ L2

loc(Ω, (Ft)t≥0,P) and let t ≥ 0. According
to the previous lemma, let us now consider an increasing sequence of stopping
times (Tn)n≥0 such that:

1. Almost surely,
lim

n→+∞
Tn = +∞;

2.

E

(∫ Tn

0

u2
sds

)
< +∞.

Since

E

(∫ Tn

0

u2
sds

)
< +∞,

the stochastic integral∫ Tn

0

usdBs =

∫ +∞

0

us1[0,Tn](s)dBs
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exists. We may therefore define in a unique way a stochastic process(∫ t

0

usdBs

)
t≥0

such that:

1. (∫ t

0

usdBs

)
t≥0

is a continuous stochastic process adapted to the filtration (Ft)t≥0;

2. The stochastic process (∫ t∧Tn

0

usdBs

)
t≥0

is a uniformly integrable martingale with respect to the filtration (Ft)t≥0

(because it is bounded in L2) .

This leads to the following definition:

Definition 5.25 (Local martingale). A stochastic process (Mt)t≥0 is called a
local martingale (with respect to the filtration (Ft)t≥0) if there is a sequence
of stopping times (Tn)n≥0 such that:

1. The sequence (Tn)n≥0 is increasing and almost surely satisfies limn→+∞ Tn =
+∞;

2. For n ≥ 1, the process (Mt∧Tn)t≥0 is a uniformly integrable martingale
with respect to the filtration (Ft)t≥0.

Thus, as an example, if u ∈ L2
loc(Ω, (Ft)t≥0,P) then the process

(∫ t
0
usdBs

)
t≥0

is a local martingale. Of course, any martingale turns out to be a local mar-
tingale. But, as we will see it later, in general the converse is not true:

The following Exercise gives a useful criterion to prove that a given local
martingale is actually martingale.

Exercise 5.26. Let (Mt)t≥0 be a continuous local martingale such that t ≥ 0,

E
(

sup
s≤t
|Ms |

)
< +∞.

Show that (Mt)t≥0 is a martingale. As a consequence, bounded local martingales
necessarily are martingales.

Exercise 5.27. Show that a positive local martingale is a supermartingale.
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It is interesting to observe that if (Mt)t≥0 is a local martingale, then the se-
quence of stopping times may explicitly be chosen so that the resulting stopped
martingales enjoy nice properties.

Lemma 5.28. Let (Mt)t≥0 be a continuous local martingale on (Ω, (Ft)t≥0,F ,P)
such that M0 = 0. Let

Tn = inf{t ≥ 0, |Mt| ≥ n}.

Then, for n ∈ N, the process (Mt∧Tn)t≥0 is a bounded martingale.

Proof. Let (Sn)n≥0 be a sequence of stopping times such that:

1. The sequence (Sn)n≥0 is increasing and almost surely limn→+∞ Sn =
+∞;

2. For every n ≥ 1, the process (Mt∧sn)t≥0 is a uniformly integrable mar-
tingale with respect to the filtration (Ft)t≥0.

For t ≥ s and k, n ≥ 0, we have:

E (Mt∧Sk∧Tn | Fs) = Ms∧Sk∧Tn .

Letting k → +∞ leads then to the expected result. 2

Since bounded martingales are of course square integrable, we easily deduce
from the previous Lemma that the following result holds:

Theorem 5.29. Let (Mt)t≥0 be a continuous local martingale on (Ω, (Ft)t≥0,F ,P)
such that M0 = 0. Then, there is a unique continuous increasing process
(〈M〉t)t≥0 such that:

1. 〈M〉0 = 0;

2. The process (M2
t − 〈M〉t)t≥0 is a local martingale.

Furthermore, for every t ≥ 0 and every sequence of subdivisions ∆n[0, t] such
that

lim
n→+∞

| ∆n[0, t] |= 0,

the following limit holds in probability:

lim
n→+∞

n∑
k=1

(
Mtnk

−Mtnk−1

)2

= 〈M〉t.

The process (〈M〉t)t≥0 is called the quadratic variation of the local martingale.
Moreover, if u is a progressively measurable process such that for every t ≥ 0,

P
(∫ t

0

u2
sd〈M〉s < +∞

)
= 1,
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then we may define a stochastic integral
(∫ t

0
usdMs

)
t≥0

such that the stochastic

process
(∫ t

0
usdMs

)
t≥0

is a continuous local martingale.

At that point, we already almost found the widest class of stochastic pro-
cesses with respect to which it was possible to naturally construct a stochastic
integral. To go further in that direction, let us first observe that if we add a
bounded variation process to a local martingale, then we obtain a process with
respect to which a stochastic integral is naturally defined.

More precisely, if (Xt)t≥0 may be written under the form:

Xt = X0 +At +Mt

where (At)t≥0 is a bounded variation process and where (Mt)t≥0 is a contin-
uous local martingale on (Ω, (Ft)t≥0,F ,P) such that M0 = 0, then if u is a
progressively measurable process such that for t ≥ 0,

P
(∫ t

0

u2
sd〈M〉s < +∞

)
= 1,

we may define a stochastic integral as(∫ t

0

usdXs

)
t≥0

=

(∫ t

0

usdAs +

∫ t

0

usdMs

)
t≥0

where
∫ t

0
usdAs is simply understood as the Riemann-Stieltjes integral with

respect to the process (At)t≥0 .
The class of stochastic processes that we obtained is called the class of

semimartingales and, as we will see it later, is the most relevant one:

Definition 5.30 (Semimartingale). Let (Xt)t≥0 be an adapted continuous
stochastic process on the filtered probability space (Ω, (Ft)t≥0,F ,P). We say
that (Xt)t≥0 is a semimartingale with respect to the filtration (Ft)t≥0 if (Xt)t≥0

may be written as:
Xt = X0 +At +Mt

where (At)t≥0 is a bounded variation process and (Mt)t≥0 is a continuous local
martingale such that M0 = 0. If it exists, the previous decomposition is unique.

Remark 5.31. It is possible to prove that if (Xt)t≥0 is a semimartingale with
respect to a filtration (Ft)t≥0 then it is also semimartingale in its own natural
filtration (see [?]).

Exercise 5.32. Let (Mt)t≥0 be a continuous local martingale on the filtered
probability space (Ω, (Ft)t≥0,F ,P). Show that (M2

t )t≥0 is a semimartingale.

Since a bounded variation process has a zero quadratic variation, it is easy
to prove the following theorem:
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Proposition 5.33. Let

Xt = X0 +At +Mt, t ≥ 0,

be a continuous adapted semimartingale. For every t ≥ 0 and every sequence
of subdivisions ∆n[0, t] such that

lim
n→+∞

| ∆n[0, t] |= 0,

the following limit holds in probability:

lim
n→+∞

n∑
k=1

(
Xtnk
−Xtnk−1

)2

= 〈M〉t.

We therefore call 〈M〉 the quadratic variation of X and denote 〈X〉 = 〈M〉.

Exercise 5.34. Let (Xt)t≥0 be a continuous semimartingale on the filtered
probability space (Ω, (Ft)t≥0,F ,P). If ∆[0, T ] is a subdivision of the time in-
terval [0, T ], we denote

S
∆[0,T ]
t (X) =

k−1∑
i=0

(
Xti+1

−Xti

)2
+ (Xt −Xtk)2,

where k is such that tk ≤ t < tk+1. Let ∆n[0, T ] be a sequence of subdivisions
of [0, T ] such that

lim
n→+∞

| ∆n[0, T ] |= 0.

Show that the following limit holds in probability,

lim
n→+∞

sup
0≤t≤T

∣∣∣S∆[0,T ]
t (X)− 〈X〉t

∣∣∣ = 0.

Exercise 5.35. Let (Xt)t≥0 be a continuous semimartingale on (Ω, (Ft)t≥0,F ,P).
Let un be a sequence of locally bounded and adapted processes almost surely con-
verging toward 0 such that un ≤ u, where u is a locally bounded process. Show
that for T ≥ 0, the following limit limit holds in probability

lim
n→+∞

sup
0≤t≤T

∣∣∣∣∫ t

0

uns dXs

∣∣∣∣ = 0.

It already has been observed that in the Brownian case, though the stochas-
tic integral is not an almost sure limit of Riemann sums, it is however a limit
in probability of such sums. This may extended to semimartingales in the
following way.



4 Local martingales, Semimartingales and Integrators 163

Proposition 5.36. Let u be a continuous and adapted process, let (Xt)t≥0 be
a continuous and adapted semimartingale and let t ≥ 0. For every sequence of
subdivisions ∆n[0, t] such that

lim
n→+∞

| ∆n[0, t] |= 0,

the following limit holds in probability:

lim
n→+∞

n−1∑
k=0

utnk

(
Xtnk+1

−Xtnk

)
=

∫ t

0

usdXs.

Exercise 5.37 (Backward and Stratonovitch integrals). Let (Xt)t≥0, (Yt)t≥0

be continuous semimartingales.

1. Show that for every sequence of subdivisions ∆n[0, t] such that

lim
n→+∞

| ∆n[0, t] |= 0,

the following limit exists in probability:

lim
n→+∞

n−1∑
k=0

Xtnk
+Xtnk+1

2

(
Ytnk+1

− Ytnk
)
.

This limit is called the Stratonovitch integral and denoted
∫ t

0
Xs ◦ dYs.

2. Show the formula∫ t

0

Xs ◦ dYs =

∫ t

0

XsdYs +
1

2
〈X,Y 〉t.

3. With the same assumptions as above, show that the following limit exists
in probability:

lim
n→+∞

n−1∑
k=0

Xtnk+1

(
Ytnk+1

− Ytnk
)
.

The limit is called the backward stochastic integral. Find a formula relat-
ing the backward integral to Stratonovitch’s.

As we already suggested it, the class of semimartingales is actually the
widest class of stochastic processes with respect to which we may define a
stochastic integral that enjoys natural probabilistic properties. Let us more
precisely explain what the previous statement means.

We denote by Eb the set of processes (ut)t≥0 such that:

ut =

N∑
i=1

Fi1(Si,Ti](t),
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where 0 ≤ S1 ≤ T1 ≤ ... ≤ SN ≤ TN are bounded stopping times and where
the Fi’s are random variable that are bounded and measurable with respect
to FSi . If (Xt)t≥0 is a continuous and adapted process and if u ∈ Eb, then we
naturally define ∫ t

0

usdXs =

N∑
i=1

Fi(XTi∧t −XSi∧t).

We have the following theorem whose proof goes back to Meyer and that can
be found in the book [?] by Protter:

Theorem 5.38. Let (Xt)t≥0 be a continuous and adapted process. The process
(Xt)t≥0 is a semimartingale if and only if for every sequence un in Eb that
almost surely converges to 0, we have for every t ≥ 0 and ε > 0,

lim
n→+∞

P
(∣∣∣∣∫ t

0

uns dXs

∣∣∣∣ > ε

)
= 0.

If the previous continuity in probability is not asked, then integrals in the
rough paths sense of Lyons (see Chapter 7) may be useful in applications. This
integral is a natural extension of Young’s integral which coincides with the
Stratonovitch integral (see Exercise 5.37) for semimartingales but which does
not enjoy any nice probabilistic property.

5 Döblin-Itô formula

The Döblin-Itô formula is certainly the most important and useful formula
of stochastic calculus. It is the change of variable formula for stochastic in-
tegrals. It is a very simple formula whose specificity is the appearance of a
quadratic variation term. This reflects the fact that semimartingales have a
finite quadratic variation.

Due to its importance, we first provide a heuristic argument on how to
derive Itô formula. Let f : R → R be a smooth function and x : R → R be a
C1 path R→ R. We have the following heuristic computation:

f(xt+dt) = f(xt + (xt+dt − xt))
= f(xt) + f ′(xt)(xt+dt − xt)
= f(xt) + f ′(xt)dxt.

This suggests, by summation, the following correct formula:

f(xt) = f(x0) +

∫ t

0

f ′(xs)dxs.

Let us now try to consider a Brownian motion (Bt)t≥0 instead of the smooth
path x and let us try to adapt the previous computation to this case. Since
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Brownian motion has quadratic variation which is not zero, 〈B〉t = t, we need
to go at the order 2 in the Taylor expansion of f . This leads to the following
heuristic computation:

f(Bt+dt) = f(Bt + (Bt+dt −Bt))

= f(Bt) + f ′(Bt)(Bt+dt −Bt) +
1

2
f ′′(Bt)((Bt+dt −Bt))2

= f(Bt) + f ′(Bt)dBt +
1

2
f ′′(Bt)dt.

By summation, we are therefore led to the formula

f(Bt) = f(0) +

∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bs)ds,

which is, as we will see it later, perfectly correct.
In what follows, we consider a filtered probability space (Ω, (Ft)t≥0,F ,P)

that satisfies the usual conditions. Our starting point to prove Döblin-Itô
formula is the following formula which is known as the integration by parts
formula for semimartingales:

Theorem 5.39 (Integration by parts formula). Let (Xt)t≥0 and (Yt)t≥0 be
two continuous semimartingales, then the process (XtYt)t≥0 is a continuous
semimartingale and we have:

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs + 〈X,Y 〉t, t ≥ 0.

Proof. By bilinearity of the multiplication, we may assume X = Y . Also by
considering, if needed, X −X0 instead of X, we may assume that X0 = 0.

Let t ≥ 0. For every sequence ∆n[0, t] such that

lim
n→+∞

| ∆n[0, t] |= 0,

we have

n∑
k=1

(
Xtnk
−Xtnk−1

)2

= X2
t − 2

n∑
k=1

Xtnk−1

(
Xtnk
−Xtnk−1

)
.

By letting n → ∞, and using Propositions 5.33 and 5.36 we therefore obtain
the following identity which yields the expected result.

X2
t = 2

∫ t

0

XsdXs + 〈X〉t.

2
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Exercise 5.40. Let

L =

n∑
i=1

bi(x)
∂

∂xi
+

1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
,

be a diffusion operator. Let us assume that there exists a diffusion process
(Xt)t≥0 with generator L. Show that for f ∈ Cc(Rn,R), the quadratic variation
of the martingale

Mf
t = f(Xt)−

∫ t

0

Lf(Xs)ds

is given by

〈Mf 〉t =

∫ t

0

Γ(f)(Xs)
2ds,

where Γ(f) = 1
2 (Lf2 − 2fLf) is the carré du champ.

We are now in position to prove the Döblin-Itô formula in its simpler form.

Theorem 5.41 (Döblin-Itô formula I). Let (Xt)t≥0 be a continuous and adapted
semimartingale and let f : R → R be a function which is twice continuously
differentiable. The process (f(Xt))t≥0 is a semimartingale and the following
change of variable formula holds:

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d〈X〉s. (5.1)

Proof. We assume that the semimartingale (Xt)t≥0 is bounded. If this is not,
we may apply the following arguments to the semimartingale (Xt∧Tn)t≥0, where
Tn = inf{t ≥ 0, Xt ≥ n} and then let n→∞ .

Let A be the set of two times continuously differentiable functions f for
which the formula (5.1) holds. It is straightforward that A is a vector space.

Let us show that A is also an algebra, that is also let stable by multipli-
cation. Let f, g ∈ A. By using the integration by parts formula with the
semimartingales (f(Xt))t≥0 and (g(Xt))t≥0, we obtain

f(Xt)g(Xt) = f(X0)g(X0)+

∫ t

0

f(Xs)dg(Xs)+

∫ t

0

g(Xs)df(Xs)+〈f(X), g(X)〉t.

The terms of the previous sum may be separately treated in the following way.
Since f, g ∈ A, we get:∫ t

0

f(Xs)dg(Xs) =

∫ t

0

f(Xs)g
′(Xs)dXs +

1

2

∫ t

0

f(Xs)g
′′(Xs)d〈X〉s

∫ t

0

g(Xs)df(Xs) =

∫ t

0

g(Xs)f
′(Xs)dXs +

1

2

∫ t

0

g(Xs)f
′′(Xs)d〈X〉s
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〈f(X), g(X)〉t =

∫ t

0

f ′(Xs)g
′(Xs)d〈X〉s.

Therefore,

f(Xt)g(Xt) =f(X0)g(X0) +

∫ t

0

f(Xs)g
′(Xs)dXs +

∫ t

0

g(Xs)f
′(Xs)dXs

+
1

2

∫ t

0

f(Xs)g
′′(Xs)d〈X〉s +

∫ t

0

f ′(Xs)g
′(Xs)d〈X〉s

+
1

2

∫ t

0

g(Xs)f
′′(Xs)d〈X〉s

=f(X0)g(X0) +

∫ t

0

(fg)′(Xs)dXs +
1

2

∫ t

0

(fg)′′(Xs)d〈X〉s.

We deduce that fg ∈ A.
As a conclusion, A is an algebra of functions. Since A contains the function

x→ x, we deduce that A actually contains every polynomial function. Now in
order to show that every function f which is twice continuously differentiable
is actually in A, we first observe that since X is assumed to be bounded, it
take its values in a compact set.

It is then possible to find a sequence of polynomials Pn such that, on this
compact set, Pn uniformly converges toward f , P ′n uniformly converges toward
f ′ and P ′′n uniformly converges toward f ′′. We may then conclude by using the
result of Exercise 5.35. 2

As a particular case of the previous formula, if we apply this formula with
X as a Brownian motion, we get the formula that was already pointed out at
the beginning of the section: If f : R → R is twice continuously differentiable
function, then

f(Bt) = f(0) +

∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bs)ds.

It is easy to derive the following variations of the Döblin-Itô formula:

Theorem 5.42 (Döblin-Itô formula II). Let (Xt)t≥0 be a continuous and
adapted semimartingale, and let (At)t≥0 be an adapted bounded variation pro-
cess. If f : R × R → R is a function that is once continuously differentiable
with respect to its first variable and that is twice continuously differentiable with
respect to its second variable, then for t ≥ 0:

f(At, Xt) =

f(A0, X0)+

∫ t

0

∂f

∂t
(As, Xs)dAs +

∫ t

0

∂f

∂x
(As, Xs)dXs +

1

2

∫ t

0

∂2f

∂x2
(As, Xs)d〈X〉s.



168 5 Itô calculus

Theorem 5.43 (Döblin-Itô formula III). Let (X1
t )t≥0,...,(Xn

t )t≥0 be n adapted
and continuous semimartingales and let f : Rn → R be a twice continuously
differentiable function. We have:

f(X1
t , ..., X

n
t ) =f(X1

0 , ..., X
n
0 ) +

n∑
i=1

∫ t

0

∂f

∂xi
(X1

s , ..., X
n
s )dXi

s

+
1

2

n∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(X1

s , ..., X
n
s )d〈Xi, Xj〉s.

Exercise 5.44. Let f : R≥0 × R → C be a function that is once continuously
differentiable with respect to its first variable and twice continuously differen-
tiable with respect to its second variable that satisfies

1

2

∂2f

∂x2
+
∂f

∂t
= 0.

Show that if (Mt)t≥0 is a continuous local martingale, then (f(〈M〉t,Mt))t≥0

is a continuous local martingale. Deduce that for λ ∈ C, the process(
exp(λMt −

1

2
λ2〈M〉t)

)
t≥0

is a local martingale.

Exercise 5.45. The Hermite polynomial of order n is defined as

Hn(x) = (−1)n
1

n!
e
x2

2
dn

dxn
e−

x2

2 .

1. Compute H0, H1, H2, H3.

2. Show that if (Bt)t≥0 is a Brownian motion, then the process
(
tn/2Hn(Bt√

t
)
)
t≥0

is a martingale.

3. Show that

tn/2Hn

(
Bt√
t

)
=

∫ t

0

∫ tn

0

· · ·
∫ t2

0

dBt1 ...dBtn .

6 Recurrence and transience of the Brownian motion in
higher dimensions

The purpose of the next sections is to illustrate through several applications
the power of the stochastic integration theory and particularly of the Döblin-
Itô formula. We start with a study of the multidimensional Brownian mo-
tion. As already pointed out, a multidimensional stochastic process (Bt)t≥0 =
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(
B1
t , · · · , Bnt

)
t≥0

, is called a Brownian motion if the processes (B1
t )t≥0 , · · · ,

(Bnt )t≥0 are independent Brownian motions. In the sequel we denote by ∆ the
Laplace operator on Rn, that is

∆ =

n∑
i=1

∂2

∂x2
i

.

The following result is an easy consequence of the Döblin-Itô formula.

Proposition 5.46. Let f : R≥0 ×Rn → R be a function that is once continu-
ously differentiable with respect to its first variable and twice continuously dif-
ferentiable with respect to its second variable and let (Bt)t≥0 = (B1

t , ..., B
n
t )t≥0

be a n-dimensional Brownian motion. The process

Xt = f(t, Bt)−
(∫ t

0

1

2
∆f(s,Bs) +

∂f

∂t
(s,Bs)ds

)
is a local martingale. If moreover f is such that

n∑
i=1

(
∂f

∂xi
(t, x)

)2

≤ φ(t)eK‖x‖,

for some continuous function φ and some constant K ∈ R, then (Xt)t≥0 is a
martingale.

In particular, if f is a harmonic function, i.e. ∆f = 0, and if (Bt)t≥0 is a
multidimensional Brownian motion, then the process (f(Bt))t≥0 is a local mar-
tingale. As we will see it later, this nice fact has many consequences. A first
nice application is the study of recurrence or transience of the multidimensional
Brownian motion paths. As we have seen before, the one-dimensional Brow-
nian motion is recurrent: It reaches any value with probability 1. In higher
dimensions, the situation is more subtle.

Let (Bt)t≥0 = (B1
t , ..., B

n
t )t≥0 be a n-dimensional Brownian motion with

n ≥ 2. For a > 0 and x ∈ Rn, we consider the stopping time

T xa = inf{t ≥ 0, ‖Bt + x‖ = a}.

Proposition 5.47. For a < ‖x‖ < b,

P (T xa < T xb ) =

{
ln b−ln ‖x‖
ln b−ln a , n = 2
‖x‖2−n−b2−n
a2−n−b2−n , n ≥ 3.

Proof. For a < ‖x‖ < b, we consider the function

f(x) = Ψ(‖x‖) =

{
ln ‖x‖, n = 2

‖x‖2−n, n ≥ 3.
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A straightforward computation shows that ∆f = 0. The process (f(Bt∧Txa ∧Txb ))t≥0

is therefore a martingale, which implies E
(
f(BTxa ∧Txb )

)
= f(x). This yields

Ψ(a)P (T xa < T xb ) + Ψ(b)P (T xb < T xa ) = f(x).

Since

P (T xa < T xb ) + P (T xb < T xa ) = 1,

we deduce that

P (T xa < T xb ) =

{
ln b−ln ‖x‖
ln b−ln a , n = 2
‖x‖2−n−b2−n
a2−n−b2−n , n ≥ 3.

2

By letting b→∞, we get

Corollary 5.48. For 0 < a < ‖x‖,

P (T xa < +∞) =

{
1, n = 2
‖x‖2−n
a2−n , n ≥ 3.

As a consequence, for n = 2 the Brownian motion is recurrent, that is, for
every non empty set O ⊂ R2,

P (∃t ≥ 0, Bt ∈ O) = 1.

Though the two-dimensional Brownian motion is recurrent, points are al-
ways polar.

Proposition 5.49. For every x ∈ Rn, P(∃t ≥ 0, Bt = x) = 0.

Proof. It suffices to prove that for every x ∈ Rn, x 6= 0, P (T x0 < +∞) = 0. We
have

{T x0 < +∞} = ∪n≥0 ∩m≥ 1
‖x‖
{T x1/m ≤ T

x
n}.

Since P
(
∩m≥ 1

‖x‖
{T x1/m ≤ T

x
n}
)

= limm→∞ P
(
T x1/m ≤ T

x
n

)
= 0, we get

P (T x0 < +∞) = 0.

2

As we have just seen, the two-dimensional Brownian motion will hit every
non empty open set with probability one. The situation is different in dimension
higher than 3: Brownian motion paths will eventually leave any bounded set
with probability one.



7 Itô representation theorem 171

Proposition 5.50. Let (Bt)t≥0 = (B1
t , ..., B

n
t )t≥0 be a n-dimensional Brown-

ian motion. If n ≥ 3 then almost surely

lim
t→∞

‖Bt‖ = +∞.

Proof. Let us assume n ≥ 3. Let Φ(x) = 1
‖x+a‖n−2 where a ∈ Rn, a 6= 0. Since

(Bt)t≥0 will never hit the point −a, we can consider the process (Φ(Bt))t≥0

which is seen to be a positive local martingale from Itô’s formula. A positive
local martingale is always a supermartingale. Therefore from the Doob’s con-
vergence theorem (see Exercise 1.42), the process (Φ(Bt))t≥0 converges almost
surely when t → ∞ to an integrable and non negative random variable Z.
From Fatou’s lemma, we have E(Z) ≤ lim inft→+∞ E(Φ(Bt)). By the scaling
property of the Brownian motion, it is clear that lim inft→+∞ E(Φ(Bt)) = 0.
We conclude Z = 0. 2

Exercise 5.51. (Probabilistic proof of Liouville theorem) By using martingale
methods, prove that if f : Rn → R is a bounded harmonic function, then f is
constant.

Exercise 5.52. Let (Bt)t≥0 = (B1
t , ..., B

n
t )t≥0 be a n-dimensional Brownian

motion. Show that for n ≥ 3, the process
(

1
‖Bt+a‖n−2

)
t≥0

, is a local martingale

which is not a martingale.

7 Itô representation theorem

In this section we show that, remarkably, any square integrable random vari-
able which is measurable with respect to a Brownian motion, can be expressed
as a stochastic integral with respect to this Brownian motion. A striking con-
sequence of this result, which is known as Itô’s representation theorem, is that
any square martingale of the filtration has a continuous version.

Let (Bt)t≥0 be a Brownian motion. In the sequel, we consider the filtration
(Ft)t≥0 which is the usual completion of the natural filtration of (Bt)t≥0 (such
a filtration is called a Brownian filtration).

The following lemma is a straightforward consequence of the Döblin-Itô
formula.

Lemma 5.53. Let f : R≥0 → R be a locally square integrable function. The
process (

exp

(∫ t

0

f(s)dBs −
1

2

∫ t

0

f(s)2ds

))
t≥0

is a square integrable martingale.
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Proof. From the Döblin-Itô formula we have

exp

(∫ t

0

f(s)dBs −
1

2

∫ t

0

f(s)2ds

)
=1 +

∫ t

0

f(s) exp

(∫ s

0

f(u)dBu −
1

2

∫ s

0

f(u)2du

)
dBs.

The random variable
∫ s

0
f(u)dBu is a Gaussian random variable with mean 0

and variance
∫ s

0
f(u)2du. As a consequence

E
(∫ t

0

f(s)2 exp

(
2

∫ s

0

f(u)dBu

)
ds

)
< +∞

and the process∫ t

0

f(s) exp

(∫ s

0

f(u)dBu −
1

2

∫ s

0

f(u)2du

)
dBs

is a martingale. 2

Lemma 5.54. Let D be the set of compactly supported and piecewise constant
functions R≥0 → R, i.e. the set of functions f that can be written as

f =

n∑
i=1

ai1(ti−1,ti],

for some 0 ≤ t1 ≤ · · · ≤ tn and a1, · · · , an ∈ R. The linear span of the family{
exp

(∫ +∞

0

f(s)dBs −
1

2

∫ +∞

0

f(s)2ds

)
, f ∈ D

}
is dense in L2(F∞,P).

Proof. Let F ∈ L2(F∞,P) such that for every f ∈ D,

E
(
F exp

(∫ +∞

0

f(s)dBs −
1

2

∫ +∞

0

f(s)2ds

))
= 0.

Let t1, · · · , tn ≥ 0. We have for every λ1, · · · , λn ∈ R,

E

(
F exp

(
n∑
i=1

λi(Bti −Bti−1
)

))
= 0.

By analytic continuation, we see that

E

(
F exp

(
n∑
i=1

λi(Bti −Bti−1
)

))
= 0.
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actually also holds for every λ1, · · · , λn ∈ C. By using the Fourier transform,
it implies that

E (F | Bt1 , · · · , Btn) = 0.

Since t1, · · · , tn were arbitrary, we conclude that E(F | F∞) = 0. As a conclu-
sion F = 0. 2

We are now in position to state the representation theorem.

Theorem 5.55 (Itô representation theorem). For every F ∈ L2(F∞,P), there
is a unique progressively measurable process (ut)t≥0 such that E

(∫∞
0
u2
sds
)
<

+∞ and

F = E(F ) +

∫ +∞

0

usdBs.

Proof. The uniqueness is immediate as a consequence of the Itô’s isometry for
stochastic integrals. Let A be the set of random variables F ∈ L2(F∞,P)
such that there exists a progressively measurable process (ut)t≥0 such that
E
(∫∞

0
u2
sds
)
< +∞ and

F = E(F ) +

∫ +∞

0

usdBs.

From the above lemma, it is clear that A contains the set of set of random
variables {

exp

(∫ +∞

0

f(s)dBs −
1

2

∫ +∞

0

f(s)2ds

)
, f ∈ D

}
.

Since this set is total in L2(F∞,P), we just need to prove that A is closed
in L2(F∞,P). So, let (Fn)n∈N be a sequence of random variables such that
Fn ∈ A and Fn →n→∞ F in L2(F∞,P). There is a progressively measurable
process (unt )t≥0 such that E

(∫∞
0

(uns )2ds
)
< +∞ and

Fn = E(Fn) +

∫ +∞

0

uns dBs.

By using Itô’s isometry, it is seen that the sequence un is a Cauchy sequence
and therefore converges to a process u which is seen to satisfy

F = E(Fn) +

∫ +∞

0

uns dBs.

2

As a consequence of the representation theorem, we obtain the following
description of the square integrable martingales of the filtration (Ft)t≥0.



174 5 Itô calculus

Corollary 5.56. Let (Mt)t≥0 be a square integrable martingale of the filtration
(Ft)t≥0. There is a unique progressively measurable process (ut)t≥0 such that

for every t ≥ 0, E
(∫ t

0
u2
sds
)
< +∞ and

Mt = E(M0) +

∫ t

0

usdBs.

In particular, (Mt)t≥0 admits a continuous version.

Exercise 5.57. Show that if (Mt)t≥0 is a local martingale of the filtration
(Ft)t≥0, then there is a unique progressively measurable process (ut)t≥0 such

that for every t ≥ 0, P
(∫ t

0
u2
sds < +∞

)
= 1 and

Mt = M0 +

∫ t

0

usdBs.

8 Time changed martingales and planar Brownian motion

In the previous section, we proved that any martingale which is adapted to a
Brownian filtration can be written as a stochastic integral. In this section, we
prove that any martingale can also be represented as a time changed Brownian
motion. To prove this fact, we give first first a characterization of the Brownian
motion which is interesting in itself. In this section, we denote by (Ft)t≥0 a
filtration that satisfies the usual conditions.

Proposition 5.58 (Lévy characterization theorem). Let (Mt)t≥0 be a continu-
ous local martingale such that M0 = 0 and such that for every t ≥ 0, 〈M〉t = t.
The process (Mt)t≥0 is a standard Brownian motion.

Proof. Let Nt = eiλMt+
1
2λ

2t. By using the Döblin-Itô formula, we obtain that
for s ≤ t,

Nt = Ns +

∫ t

s

NudMu.

As a consequence, the process (Nt)t≥0 is a martingale and, from the above
equality we get

E
(
eiλ(Mt−Ms) | Fs

)
= e−

1
2λ

2(t−s).

The process (Mt)t≥0 is therefore a continuous process with stationary and
independent increments such that Mt is normally distributed with mean 0 and
variance t. It is thus a Brownian motion. 2

Exercise 5.59 (Bessel process). Let (Bt)t≥0 be a d-dimensional Brownian
motion d ≥ 2. We denote

ρt = ‖x+Bt‖,
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where x 6= 0. Show that

ρt −
∫ t

0

d− 1

2ρs
ds

is a standard Brownian motion.

The next proposition shows that continuous martingales behave in a nice
way with respect to time changes.

Proposition 5.60. Let (Ct)t≥0 be a continuous and increasing process such
that for every t ≥ 0, Ct is a finite stopping time of the filtration (Ft)t≥0.
Let (Mt)t≥0 be a continuous martingale with respect to (Ft)t≥0. The process
(MCt)t≥0 is a local martingale with respect to the filtration (FCt)t≥0. Moreover
〈MC〉 = 〈M〉C .

Proof. By using localization, if necessary, we can assume that C is bounded.
According to the Doob’s stopping theorem (see Theorem 1.34), we need to
prove that for every bounded stopping time T of the filtration (FCt)t≥0, we have
E(MCT ) = 0. But CT is obviously a bounded stopping time of the filtration
(Ft)t≥0 and thus from Doob’s stopping theorem we have E(MCT ) = 0. The
same argument shows that M2

C − 〈M〉C . 2

Exercise 5.61. Let (Ct)t≥0 be an increasing and right continuous process such
that for every t ≥ 0, Ct is a finite stopping time of the filtration (Ft)t≥0. Let
(Mt)t≥0 be a continuous martingale with respect to (Ft)t≥0 such that M is con-
stant on each interval [Ct−, Ct]. Show that the process (MCt)t≥0 is a continuous
local martingale with respect to the filtration (FCt)t≥0 and that 〈MC〉 = 〈M〉C .

We can now prove the following nice representation result for martingales.

Theorem 5.62 (Dambis, Dubins-Schwarz theorem). Let (Mt)t≥0 be a contin-
uous martingale such that M0 = 0 and 〈M〉∞ = +∞. There exists a Brownian
motion (Bt)t≥0, such that for every t ≥ 0,

Mt = B〈M〉t .

Proof. Let Ct = inf{s ≥ 0, 〈M〉s > t}. (Ct)t≥0 is an increasing and right
continuous process such that for every t ≥ 0, Ct is a finite stopping time of the
filtration (Ft)t≥0 and M is obviously constant on each interval [Ct−, Ct]. From
the previous exercise the process (MCt)t≥0 is a continuous local martingale
whose quadratic variation is equal to t. From Lévy’s characterization theorem,
it is thus a Brownian motion. 2

Exercise 5.63. Show that if (Mt)t≥0 is a continuous local martingale such
that M0 = 0 and 〈M〉∞ = +∞, there exists a Brownian motion (Bt)t≥0, such
that for every t ≥ 0,

Mt = B〈M〉t .
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Exercise 5.64. Let (ut)t≥0 be a continuous adapted process and let (Bt)t≥0 be

a Brownian motion. Show that for every T ≥ 0, the process
(∫ t

0
usdBs

)
0≤t≤T

has 1
2 − ε Hölder paths, where 0 < ε ≤ 1

2 .

Exercise 5.65 (Construction of one-dimensional diffusions). Let b : R → R
and let σ : R→ (0,+∞) be two continuous functions. Let

s(x) =

∫ x

0

exp

(
−2

∫ y

0

| b(z) |
σ(z)2

dz

)
dy, x ∈ R.

and let (Bt)t≥0 be a Brownian motion. For u ≥ 0, we denote

Au =

∫ u

0

ds

s′(Bs)σ2(Bs)
=

∫ u

0

exp
(

2
∫ Bs

0
|b(z)|
σ(z)2 dz

)
σ2(Bs)

ds.

Show that the process (
s−1

(
Binf{u,Au>t}

))
t≥0

is a Markov process whose semigroup is generated by the operator

Lf = b(x)f ′(x) +
1

2
σ(x)2f ′′(x), f ∈ Cc(R,R).

Therefore, all one-dimensional diffusions may be constructed from the Brown-
ian motion.

The study of the planar Brownian is deeply connected to the theory of
analytic functions. The fundamental property of the Brownian curve is that it
is a conformal invariant. By definition, a complex Brownian motion is a process
(Bt)t≥0 in the complex plane that can be decomposed as Bt = B1

t + iB2
t where

B1 and B2 are independent Brownian motions. The following proposition
is easily proved as a consequence of Döblin-Itô formula and of the Dambins,
Dubins-Schwarz theorem.

Proposition 5.66 (Conformal invariance). Let (Bt)t≥0 be a complex Brownian
motion and f : C→ C be an analytic function. Then we have for every t ≥ 0,

f(Bt) = f(0) +

∫ t

0

f ′(Bs)dBs.

As a consequence, there exists a complex Brownian motion (βt)t≥0 such that
for every t ≥ 0,

f(Bt) = f(0) + β∫ t
0
|f ′(Bs)|2ds.

To study the complex Brownian motion, it is useful to look at it in polar co-
ordinates. It leads to the so-called skew-product decomposition of the complex
Brownian motion that we study in the following exercise.
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Exercise 5.67 (Skew-product decomposition). Let (Bt)t≥0 be a complex Brow-
nian motion started at z 6= 0.

1. Show that for t ≥ 0,

Bt = z exp

(∫ t

0

dBs
Bs

)
.

2. Show that there exists a complex Brownian motion (βt)t≥0 such that

Bt = z exp

(
β∫ t

0
ds
ρ2s

)
,

where ρt = |Bt|.

3. Show that the process (ρt)t≥0 is independent from the Brownian motion
(γt)t≥0 = (Im(βt))t≥0.

4. We denote θt = Im
(∫ t

0
dBs
Bs

)
which can be interpreted as a winding num-

ber around 0 of the complex Brownian motion paths. For r > |z|, we
consider the stopping time

Tr = inf{t ≥ 0, |Bt| = r}.

Compute for every r > |z|, the distribution of the random variable

1

ln(r/|z|)
θTr .

5. Prove Spitzer theorem: In distribution, we have the following convergence

2θt
ln t
→+∞ C,

where C is a Cauchy random variable with parameter 1 that is a random
variable with density 1

π(1+x2) .

Exercise 5.68. Let (Bt)t≥0 be a complex Brownian motion started at z such
that Im(z) > 0. We consider the stopping time

T = inf{t ≥ 0, Im(Bt) = 0}.

Compute the distribution of the random variable Re(BT ).
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9 Burkholder-Davis-Gundy inequalities

In this section, we study some of the most important martingale inequalities:
The Burkholder-Davis-Gundy inequalities. Interestingly, the range of appli-
cation of these inequalities is very large and they play an important role in
harmonic analysis and the study of singular integrals. These inequalities admit
several proofs. We present here a proof using the Döblin-Itô formula and an
interesting domination inequality which is due to Lenglart.

Proposition 5.69 (Lenglart inequality). Let (Nt)t≥0 be a positive adapted
continuous process and (At)t≥0 be an increasing process such that A0 = 0.
Assume that for every bounded stopping time τ ,

E(Nτ ) ≤ E(Aτ ).

Then, for every k ∈ (0, 1), and T ≥ 0,

E

((
sup

0≤t≤T
Nt

)k)
≤ 2− k

1− k
E
(
AkT
)
.

Proof. Let x, y > 0. We denote R = inf{0 ≤ t ≤ T,At ≥ y} and S = inf{0 ≤
t ≤ T,Xt ≥ x} with the usual convention that the infimum of the empty set is
∞. We first observe that

P
(

sup
0≤t≤T

Xt ≥ x,AT ≤ y
)
≤ P (XT∧S∧R ≥ x)

≤ 1

x
E (AT∧S∧R)

≤ 1

x
E (AT ∧ y) .

Let now F be a continuous increasing function from R>0 into R>0 with F (0) =
0. By using the previous inequality and Fubini theorem, we have

E(F ( sup
0≤t≤T

Xt)) = E
(∫ +∞

0

1sup0≤t≤T Xt>xdF (x)

)
≤
∫ +∞

0

[
P
(

sup
0≤t≤T

Xt ≥ x,AT ≤ x
)

+ P (AT ≤ x)

]
dF (x)

≤
∫ +∞

0

[
1

x
E (AT ∧ x) + P (AT ≤ x)

]
dF (x)

≤
∫ +∞

0

[
1

x
E (AT 1AT≤x) + 2P (AT ≤ x)

]
dF (x)

≤ 2E (F (AT )) + E
(
AT

∫ +∞

AT

dF (x)

x

)
Taking f(x) = xk, we obtain the desired result. 2
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We now turn to the Burkholder-Davis-Gundy inequalities.

Theorem 5.70 (Burkholder-Davis-Gundy inequalities). Let T > 0 and (Mt)0≤t≤T
be a continuous local martingale such that M0 = 0. For every 0 < p <∞, there
exist universal constants cp and Cp, independent of T and (Mt)0≤t≤T such that

cpE
(
〈M〉

p
2

T

)
≤ E

((
sup

0≤t≤T
|Mt|

)p)
≤ CpE

(
〈M〉

p
2

T

)
.

Proof. By stopping it is enough to prove the result for bounded M . Let q ≥ 2.
From the Döblin-Itô formula we have

d|Mt|q = q|Mt|q−1sgn(Mt)dMt +
1

2
q(q − 1)|Mt|q−2d〈M〉t

= qsgn(Mt)|Mt|q−1dMt +
1

2
q(q − 1)|Mt|q−2d〈M〉t.

As a consequence of the Doob’s stopping theorem, we get that for every bounded
stopping time τ ,

E (|Mτ |q) ≤
1

2
q(q − 1)E

(∫ τ

0

|Mt|q−2d〈M〉t
)
.

From the Lenglart’s domination inequality, we deduce then that for every k ∈
(0, 1),

E

((
sup

0≤t≤T
|Mt|q

)k)
≤ 2− k

1− k

(
1

2
q(q − 1)

)k
E

(∫ T

0

|Mt|q−2d〈M〉t

)k .

We now bound

E

(∫ T

0

|Mt|q−2d〈M〉t

)k ≤ E

( sup
0≤t≤T

|Mt|
)k(q−2)

(∫ T

0

d〈M〉t

)k
≤ E

((
sup

0≤t≤T
|Mt|

)kq)1− 2
q

E
(
〈M〉

kq
2

T

) 2
q

.

As a consequence, we obtain

E

((
sup

0≤t≤T
|Mt|q

)k)

≤2− k
1− k

(
1

2
q(q − 1)

)k
E

((
sup

0≤t≤T
|Mt|

)kq)1− 2
q

E
(
〈M〉

kq
2

T

) 2
q

.
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Letting p = qk yields the claimed result, that is

E
((

sup
0≤t≤T

|Mt|
)p)

≤ CpE
(
〈M〉

p
2

T

)
.

We proceed now to the proof of the left hand side inequality. We have,

M2
t = 〈M〉t + 2

∫ t

0

MsdMs.

Therefore, we get

E
(
〈M〉

p
2

T

)
≤ Ap

(
E
((

sup
0≤t≤T

|Mt|
)p)

+ E

(
sup

0≤t≤T

∣∣∣∣∫ t

0

MsdMs

∣∣∣∣p/2
))

.

By using the previous argument, we now have

E

(
sup

0≤t≤T

∣∣∣∣∫ t

0

MsdMs

∣∣∣∣p/2
)
≤ BpE

(∫ T

0

M2
s d〈M〉s

)p/4
≤ BpE

((
sup

0≤t≤T
|Mt|

)p/2
〈M〉p/4T

)

≤ BpE
((

sup
0≤t≤T

|Mt|
)p)1/2

E
(
〈M〉p/2T

)1/2

.

As a conclusion, we obtained

E
(
〈M〉

p
2

T

)
≤Ap

(
E
((

sup
0≤t≤T

|Mt|
)p)

+BpE
((

sup
0≤t≤T

|Mt|
)p)1/2

E
(
〈M〉p/2T

)1/2
)
.

This is an inequality of the form

x2 ≤ Ap
(
y2 +Bpxy

)
,

which easily implies
cpx

2 ≤ y2,

thanks to the inequality 2xy ≤ 1
δx

2 + δy2, with a conveniently chosen δ. 2

Exercise 5.71. Let T > 0 and (Mt)0≤t≤T be a continuous local martingale.
Consider the process

Zt = e
∫ t
0
Vsds

∫ t

0

e−
∫ s
0
VududMs,



10 Girsanov theorem 181

where (Vt)0≤t≤T is a non positive adapted and continuous process. Show that
for every 0 < p < ∞, there is a universal constant Cp, independent of T ,
(Mt)0≤t≤T and (Vt)0≤t≤T such that

E
((

sup
0≤t≤T

|Zt|
)p)

≤ CpE
(
〈M〉

p
2

T

)
.

10 Girsanov theorem

In this section, we describe a theorem which has far reaching consequences in
mathematical finance: The Girsanov theorem. It describes the impact of a
probability change on stochastic calculus.

Let (Ω, (Ft)t≥0,P) be a filtered probability space. We assume that (Ft)t≥0

is the usual completion of the filtration of a Brownian motion (Bt)t≥0. Let Q
be a probability measure on F∞ which is equivalent to P. We denote by D the
density of Q with respect to P.

Theorem 5.72 (Girsanov theorem). There exists a progressively measurable

process (Θt)t≥0 such that for every t ≥ 0, P
(∫ t

0
Θ2
sds < +∞

)
= 1 and

E (D | Ft) = exp

(∫ t

0

ΘsdBs −
1

2

∫ t

0

Θ2
sds

)
.

Moreover, the process

Bt −
∫ t

0

Θsds

is a Brownian motion on the filtered probability space (Ω, (Ft)t≥0,Q). As a
consequence, a continuous and adapted process (Xt)t≥0 is a P-semimartingale
if and only if it is a Q-semimartingale.

Proof. Since P and Q are equivalent on F∞, there are of course also equivalent
on Ft for every t ≥ 0. The density of Q/Ft with respect to P/Ft is given by

Dt = EP (D | Ft). As a consequence, the process Dt is a positive martingale.
From Itô’s representation theorem, we therefore deduce that there exists a
progressively measurable process (ut)t≥0 such that

Dt = 1 +

∫ t

0

usdBs.

Let now Θt = ut
Dt

. We have then,

Dt = 1 +

∫ t

0

ΘsDsdBs.
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By using Döblin-Itô’s formula to the process Dt exp
(
−
∫ t

0
ΘsdBs + 1

2

∫ t
0

Θ2
sds
)

,

we see that it implies

Dt = exp

(∫ t

0

ΘsdBs −
1

2

∫ t

0

Θ2
sds

)
.

We now want to prove that the process Bt −
∫ t

0
Θsds is a Q-Brownian motion.

It is clear the Q-quadratic variation of this process is t. From the Lévy’s
characterization result, we therefore just need to prove that it is a Q local
martingale. For this, we are going to prove that that the process

Nt =

(
Bt −

∫ t

0

Θsds

)
exp

(∫ t

0

ΘsdBs −
1

2

∫ t

0

Θ2
sds

)
is a P-local martingale. Indeed, from the integration by parts formula, it is
immediate that

dNt = DtdBt +

(
Bt −

∫ t

0

Θsds

)
dDt.

Since Dt is the density of QFt with respect to PFt , it is then easy to deduce
that Nt is a P-local martingale and thus a P Brownian motion. 2

Exercise 5.73. Let (Ω, (Ft)t≥0,P) be a filtered probability space that satisfies
the usual conditions. As before, let Q be a probability measure on F∞ which
is equivalent to P. We denote by D the density of Q with respect to P and
Dt = EP(D | Ft). Let (Mt)t≥0 be a P local martingale. Show that the process

Nt = Mt −
∫ t

0

d〈M,D〉s
Ds

is a Q local martingale. As a consequence, a continuous and adapted process
(Xt)t≥0 is a P-semimartingale if and only if it is a Q-semimartingale.

Exercise 5.74. Let (Bt)t≥0 be a Brownian motion. We denote by P the Wiener
measure, by (πt)t≥0 the coordinate process and by (Ft)t≥0 its natural filtration.

1. Let µ ∈ R and Pµ be the distribution of the process (Bt + µt)t≥0. Show
that for every t ≥ 0,

Pµ/Ft � P/Ft ,

and that
dPµ/Ft
dP/Ft

= eµπt−
µ2

2 t.

2. Is it true that
Pµ/F∞ � P/F∞ ?
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3. For a ∈ R≥0, we denote

Ta = inf{t ≥ 0, Bt + µt = a}.

Compute the density function of Ta (You may use the previous question).

4. More generally, let f : R≥0 → R be a measurable function such that for

every t ≥ 0,
∫ t

0
f2(s)ds < +∞. We denote by Pf the distribution of the

process
(
Bt +

∫ t
0
f(s)ds

)
t≥0

. Show that for every t ≥ 0,

Pf/Ft � P/Ft ,

and that
dPf/Ft
dP/Ft

= e
∫ t
0
f(s)dπs− 1

2

∫ t
0
f2(s)ds.

Let (Ω, (Ft)t≥0,F ,P) be a filtered probability space that satisfies the usual
conditions and let (Bt)t≥0 be a Brownian motion on it. Let now (Θt)t≥0 be a

progressively measurable process such that for every t ≥ 0, P
(∫ t

0
Θ2
sds < +∞

)
=

1. We denote

Zt = exp

(∫ t

0

ΘsdBs −
1

2

∫ t

0

Θ2
sds

)
, t ≥ 0.

As a consequence of the Döblin-Itô’s formula, it is clear that (Zt)t≥0 is a local
martingale. If we assume that (Zt)t≥0 is a uniformly integrable martingale,
then it is easy to see that on the σ-field F∞, there is a unique probability
measure Q equivalent to P such that for every t ≥ 0,

dQ/Ft
dP/Ft

= Zt, P− p.s.

The same argument as before shows then that with respect to Q, the process

Bt −
∫ t

0

Θsds

is a Brownian motion.
It is thus important to decide wether or not (Zt)t≥0 is a uniformly martin-

gale. The following two lemmas provide sufficient conditions that it is.

Lemma 5.75. If for every t ≥ 0,

E(Zt) = 1,

then (Zt)t≥0 is a uniformly integrable martingale.
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Proof. The process Z is a non negative local martingale and thus a super-
martingale. 2

The second condition is known as the Novikov condition, it is often easier
to check in practice than the previous one.

Lemma 5.76 (Novikov condition). If

E
(

exp

(
1

2

∫ +∞

0

Θ2
sds

))
< +∞,

then (Zt)t≥0 is a uniformly integrable martingale.

Proof. We denote Mt =
∫ t

0
ΘsdBs. As a consequence of the integrability con-

dition

E
(

exp

(
1

2
〈M〉∞

))
< +∞,

the random variable 〈M〉∞ has moments of all order. So from Burkholder-
Davis-Gundy inequalities, supt≥0 |Mt| has moments of all orders, which implies
that M is a uniformly integrable martingale. We have then

exp

(
1

2
M∞

)
= exp

(
1

2
M∞ −

1

4
〈M〉∞

)
exp

(
1

4
〈M〉∞

)
.

The Cauchy-Scwarz inequality implies then that E
(
exp

(
1
2M∞

))
< +∞. We

deduce from the Doob’s convergence theorem that the process exp
(

1
2M

)
is a

uniformly integrable submartingale. Let now η < 1. We have

exp

(
ηMt −

η2

2
〈M〉t

)
=

(
exp

(
Mt −

1

2
〈M〉t

))η2
exp

(
ηMt

1 + η

)1−η2

.

Hölder’s inequality shows then that

E
(

exp

(
ηMt −

η2

2
〈M〉t

))
≤E

(
exp

(
Mt −

1

2
〈M〉t

))η2
E
(

exp

(
ηMt

1 + η

))1−η2

≤E
(

exp

(
Mt −

1

2
〈M〉t

))η2
E
(

exp

(
Mt

2

))2η(1−η)

≤E
(

exp

(
Mt −

1

2
〈M〉t

))η2
E
(

exp

(
M∞

2

))2η(1−η)
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If we can prove that E
(

exp
(
ηMt − η2

2 〈M〉t
))

= 1, then by letting η → 1 in

the above inequality, we would get

E
(

exp

(
Mt −

1

2
〈M〉t

))
≥ 1

and thus E
(
exp

(
Mt − 1

2 〈M〉t
))

= 1.

Let p > 1 such that
η
√
p√

p−1 ≤ 1. Consider r =
√
p+1√
p−1 and s =

√
p+1

2 so that

1/r + 1/s = 1. Using

exp

(
ηMt −

η2

2
〈M〉t

)p
= exp

(√
p

r
ηMt −

p

2
η2〈M〉t

)
exp

((
pη −

√
p

r

)
Mt

)
and then Hölder’s inequality, shows that there is a constant C (depending only
on M) such that for any stopping time T

E
(

exp

(
ηMT −

η2

2
〈M〉T

)p)
≤ C.

By the Doob’s maximal inequality, it implies that the local martingale

exp

(
ηMt −

η2

2
〈M〉t

)
is actually a true martingale. This implies

E
(

exp

(
ηMt −

η2

2
〈M〉t

))
= 1

and the desired conclusion follows. 2

Exercise 5.77 (Lévy area formula). Let (B1
t , B

2
t )t≥0 be a two dimensional

Brownian motion. The random variable

St =

∫ t

0

B1
sdB

2
s −B2

sdB
1
s

is two times the algebraic area swept out by the path s→ (B1
s , B

2
s ) in the time

interval [0, t].

1. Show that
(B1

t , B
2
t , St)t≥0 =

(
B1
t , B

2
t , β

∫ t
0
ρ2sds

)
t≥0

,

where (βt)t≥0 is a Brownian motion independent from (ρt)t≥0 with ρ2
t =

(B1
t )2 + (B2

t )2.

Hint: You may write St =
∫ t

0
ρsdγs where (γt)t≥0 is a Brownian motion

independent from
∫ t

0
B1
sdB

1
s+B2

sdB
2
s

ρs
.
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2. Show that for λ ∈ R,

E
(
eiλSt | B1

t = x,B2
t = y

)
= E

(
e−

λ2

2

∫ t
0
ρ2sds | ρt =

√
x2 + y2

)
.

3. Show that the process

Dt = exp

(
λ

2
(ρ2
t − 2t)− λ2

2

∫ t

0

ρ2
sds

)
is a martingale.

4. Consider the probability measure QFt = DtPFt . Show that under Q,
(B1

t , B
2
t )t≥0 is a Gaussian process, whose covariance is to be computed.

5. Conclude that

E
(
eiλSt | B1

t = x,B2
t = y

)
=

λ

sinhλ
exp

(
−1

2
(x2 + y2)(λ cothλ− 1)

)
.

Exercise 5.78. Let (Bt)t≥0 be a standard Brownian motion and Y be an in-
dependent random variable such that P(Y = −1) = 1

2 and P(Y = 1) = 1
2 . We

consider the process Xt = Bt + µtY , where µ ∈ R. By using Girsanov theorem
provide the semimartingale decomposition of (Xt)t≥0 in its own filtration.

Notes and Comments

Section 1. It can be shown (see instance [?]) that almost surely

sup
Π∈∆[0,T ]

n−1∑
k=0

|Btk+1
−Btk |2 = +∞,

that is, the 2-variation of Brownian motion paths is almost surely +∞.

Sections 2,3,4. The study of integrals with respect to Brownian motion
has a long history going back at least to Wiener, but the breakthrough of
understanding the role of adaptedness of integrands is due to Itô in his famous
1944 paper [?]. The general theory of stochastic integration with respect to
martingales, local martingales and semimartingales was later developed and
popularized in particular by Watanabe (see [?]) and Meyer (see [?]). The
hypothesis of the continuity of the integrator process is not strictly necessary
and an integral with respect to a possibly discontinuous local martingale can
be defined (see the book by Bichteler [?] or Protter [?]).
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Section 5. The work by Döblin has long been unknown to mathematicians.
Before being killed during the second world war, in a letter sent to the French
academy of sciences in 1940 and only opened in 2000, Döblin presented a version
of the Döblin-Itô formula. His formula for a Brownian motion (Bt)t≥0 writes
as

f(Bt) = f(0) + β∫ t
0
f ′(Bs)2ds

+
1

2

∫ t

0

f ′′(Bs)ds,

where β is another Brownian motion. Observe that this formula is of course
consistent with the formula we stated in the text since, according to the Dambis,
Dubins-Schwarz theorem∫ t

0

f ′(Bs)dBs = β∫ t
0
f ′(Bs)2ds

,

for some Brownian motion β. What is remarkable is that Döblin obtained his
formula even before stochastic integration was conceived ! We refer to [?] and
[?] for more details about the fascinating story of Döblin.

Section 6. Results of this Section may be extended to more general diffu-
sion processes and hint the deep and rich connection between Markov processes
and potential theory. There are several books devoted to the interactions be-
tween potential analysis and Markov processes, we mention in particular the
classical books by Chung [?] and Doob [?] or to the more recent book by Durett
[?].

Section 7. The representation theorem plays a fundamental role in math-
ematical finance, where the integrand appears as a hedging strategy, see the
book by Karatzas and Shreve [?]. A formula for the integrand can be obtained
through Malliavin calculus (see Exercise 6.36 in Chapter 6)

Section 8. There is a deep interaction between planar Brownian motion
and complex analysis, due to the conformal invariance of the planar Brownian
motion paths. Conformally invariant processes in the plane play an important
in statistical mechanics, see the book by Lawler [?] for a detailed account.

Section 9. Martingales techniques in general and the Burkholder-Davis-
Gundy inequalities in particular have been found to play an important role in
the analysis of singular integrals where sharp, dimension free estimates can be
obtained, see the survey [?] by Bañuelos.

Section 10. Girsanov theorem is another pillar of mathematical finance.
As illustrated in the Lévy area formula exercise, it may be used to compute
distributions of Brownian functionals. This formula for the Fourier transform
of the area swept out by the planar Brownian motion is due to Lévy [?]. An
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independent and analytic proof may be found in Gaveau [?]. For many other
computations related to the stochastic area formula we refer to the book by
Yor [?].



Chapter 6

Stochastic differential equations and Malliavin
calculus

In this chapter we study the stochastic differential equations. These are the
equations associated to Itô integral. Stochastic differential equations are a
great device to study the existence of a Markov process with a given generator,
a problem studied in Chapter 4. In the first part of the chapter, we study
existence and uniqueness questions and then prove that solution of stochastic
differential equations are Markov processes. The second part of the chapter
is an introduction to Malliavin calculus which is the Sobolev regularity theory
of functionals defined on the Wiener space. Malliavin calculus is applied to
show the existence of a smooth density for solutions of stochastic differential
equations under an ellipticity assumption.

1 Existence and uniqueness of solutions

As usual, we consider a filtered probability space (Ω, (Ft)t≥0,F ,P) which sat-
isfies the usual conditions and on which is defined a n-dimensional Brownian
motion (Bt)t≥0. Let b : Rn → Rn, and σ : Rn → Rn×n be functions.

Theorem 6.1. Let us assume that there exists C > 0 such that

‖b(x)− b(y)‖+ ‖σ(x)− σ(y)‖ ≤ C‖x− y‖, x, y ∈ Rn.

Then, for every x0 ∈ Rn, there exists a unique continuous and adapted process
(Xx0

t )t≥0 such that for t ≥ 0

Xx0
t = x0 +

∫ t

0

b(Xx0
s )ds+

∫ t

0

σ(Xx0
s )dBs. (6.1)

Moreover, for every T ≥ 0, we have

E
(

sup
0≤s≤T

‖Xs‖2
)
< +∞.

Proof. Let us first observe that from our assumptions, there exists K > 0 such
that

1. ‖b(x)− b(y)‖+ ‖σ(x)− σ(y)‖ ≤ K‖x− y‖, x, y ∈ Rn;

2. ‖b(x)‖+ ‖σ(x)‖ ≤ K(1 + ‖x‖), x ∈ Rn.
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The idea is to apply a fixed point theorem in a convenient Banach space. For
T > 0, let us consider the space ET of continuous and adapted processes such
that

E
(

sup
0≤s≤T

‖Xs‖2
)
< +∞

endowed with the norm

‖ X ‖2= E
(

sup
0≤s≤T

‖Xs‖2
)
.

It is easily seen that (ET , ‖ · ‖) is a Banach space.

Step one: We first prove that if a continuous and adapted process (Xx0
t )t≥0

is a solution of the equation (6.1) then, for every T > 0, (Xx0
t )0≤t≤T ∈ ET .

Let us fix T > 0 and consider for n ∈ N the stopping times

Tn = inf{t ≥ 0, ‖Xx0
t ‖ > n},

For t ≤ T ,

Xx0

t∧Tn = x0 +

∫ t∧Tn

0

b(Xx0
s )ds+

∫ t∧Tn

0

σ(Xx0
s )dBs.

Therefore, by using the inequality

‖a+ b+ c‖2 ≤ 3(‖a‖2 + ‖b‖2 + ‖c‖2),

we get

∥∥Xx0

t∧Tn

∥∥2 ≤ 3

‖x0‖2 +

∥∥∥∥∥
∫ t∧Tn

0

b(Xx0
s )ds

∥∥∥∥∥
2

+

∥∥∥∥∥
∫ t∧Tn

0

σ(Xx0
s )dBs

∥∥∥∥∥
2
 .

Thus, we have

E
(

sup
0≤u≤t∧Tn

‖Xx0
u ‖

2

)

≤3

‖x0‖2 + E

 sup
0≤u≤t∧Tn

∥∥∥∥∥
∫ u∧Tn

0

b(Xx0
s )ds

∥∥∥∥∥
2


+E

 sup
0≤u≤t∧Tn

∥∥∥∥∥
∫ u∧Tn

0

σ(Xx0
s )dBs

∥∥∥∥∥
2


By using our assumptions, we first estimate

E

 sup
0≤u≤t∧Tn

∥∥∥∥∥
∫ u∧Tn

0

b(Xx0
s )ds

∥∥∥∥∥
2
 ≤ K2E

(∫ t∧Tn

0

(1 + ‖Xx0
s ‖)ds

)2
 .
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By using our assumptions and Doob’s inequality, we now estimate

E

 sup
0≤u≤t∧Tn

∥∥∥∥∥
∫ u∧Tn

0

σ(Xx0
s )dBs

∥∥∥∥∥
2
 ≤ 4K2E

(∫ t∧Tn

0

(1 + ‖Xs‖)2ds

)
.

Therefore, from the inequality ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2), we get

E
(

sup
0≤u≤t∧Tn

‖Xx0
u ‖

2

)
≤3

(
‖x0‖2 + 2(K2T + 4K2)

∫ t

0

(
1 + E

(
sup

0≤u≤s∧Tn

∥∥Xx0

u∧Tn

∥∥2
)
ds

))
We may now apply Gronwall’s lemma to the function

t→ E
(

sup
0≤u≤t∧Tn

‖Xx0
u ‖

2

)
and deduce

E
(

sup
0≤u≤T∧Tn

‖Xx0
u ‖

2

)
≤ C

where C is a constant that does not depend on n. Fatou’s lemma implies by
passing to the limit when n→ +∞ that

E
(

sup
0≤u≤T

‖Xx0
u ‖

2

)
≤ C.

We conclude, as expected, that

(Xx0
t )0≤t≤T ∈ ET .

More generally, by using the same arguments we can observe that if a contin-
uous and adapted process satisfies

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs,

with E(X2
0 ) < +∞, then (Xt)0≤t≤T ∈ ET .

Step 2: We now show existence and uniqueness of solutions for the equation
(6.1) on a time interval [0, T ] where T is small enough.

Let us consider the application Φ that sends a continuous and adapted
process (Xt)0≤t≤T to the process

Φ(X)t = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs.
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By using successively the inequalities (a + b)2 ≤ 2(a2 + b2), Cauchy-Schwarz
inequality and Doob’s inequality, we get

‖ Φ(X)− Φ(Y ) ‖2≤ 2(K2T 2 + 4K2T ) ‖ X − Y ‖2 .

Moreover, arguing the same way as above, we can prove

‖ Φ(0) ‖2≤ 3(x2
0 +K2T 2 + 4K2T ).

Therefore, if T is small enough Φ is a Lipschitz map ET → ET whose Lipshitz
constant is strictly less than 1. Consequently, it has a unique fixed point. This
fixed point is, of course the unique solution of (6.1) on the time interval [0, T ].
Here again, we can observe that the same reasoning applies if x0 is replaced by
a random variable X0 that satisfies E(X2

0 ) < +∞.

Step 3: In order to get a solution of (6.1) on [0,+∞), we may apply the
previous step to get a solution on intervals [Tn, Tn+1], where Tn+1−Tn is small
enough and Tn → +∞. This will provide a solution of (6.1) on [0,+∞). This
solution is unique, from the uniqueness on each interval [Tn, Tn+1].

2

Definition 6.2. An equation like (6.1) is called a stochastic differential equa-
tion.

Remark 6.3. As it appears from the very definition, solutions of stochastic
differential equations are constructed by using stochastic integrals and thus
probabilistic techniques. A theory developed in the recent years, the rough
paths theory, allows to give a pathwise interpretation of solutions of differential
equations driven by rough signals, including the Brownian motion. We refer
the reader to Chapter 7 for an overview of this theory.

Exercise 6.4. Let (Xx0
t )t≥0 denote the solution of (6.1). Show that under the

same assumptions as the previous theorem, we actually have for every T ≥ 0,
and p ≥ 1,

E
(

sup
0≤s≤T

‖Xs‖p
)
< +∞.

Exercise 6.5 (Ornstein-Uhlenbeck process). Let θ ∈ R. We consider the
following stochastic differential equation,

dXt = θXtdt+ dBt, X0 = x.

1. Show that it admits a unique solution that is given by

Xt = eθtx+

∫ t

0

eθ(t−s)dBs.
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2. Show that (Xt)t≥0 is Gaussian process. Compute its mean and covariance
function.

3. Show that if θ < 0 then, when t → +∞, Xt converges in distribution
toward a Gaussian distribution.

Exercise 6.6 (Brownian bridge). We consider for 0 ≤ t < 1 the following
stochastic differential equation

dXt = − Xt

1− t
dt+ dBt, X0 = 0.

1. Show that

Xt = (1− t)
∫ t

0

dBs
1− s

.

2. Deduce that (Xt)t≥0 is Gaussian process. Compute its mean and covari-
ance function.

3. Show that in L2, when t→ 1, Xt → 0.

Exercise 6.7 (Black-Scholes process). Let µ ∈ R and σ > 0. We consider the
following stochastic differential equation,

dXt = µXtdt+ σXtdBt, X0 = x > 0.

Show that for every t ≥ 0

Xt = xeσBt+(µ−σ22 )t.

Exercise 6.8 (Explosion time). Let b : Rn → Rn, and σ : Rn → Rn×n be
locally Lipschitz functions, that is for every N ≥ 0, there exists CN > 0 such
that

‖b(x)− b(y)‖+ ‖σ(x)− σ(y)‖ ≤ CN‖x− y‖, x, y ∈ [−N,N ]n.

Show that for every x ∈ Rn we can find stopping time e(x), almost surely
positive, and a stochastic process (Xx

t )t<e(x) such that:

•

Xx
t = x+

∫ t

0

b(Xx
s )ds+

∫ t

0

σ(Xx
s )dBs, t < e(x). (6.2)

• The process (Xx
t )t<e(x) is unique in the sense that if f(x) is an almost

surely positive stopping time and if (Y xt )t<f(x) is a stochastic process such
that

Y xt = x+

∫ t

0

b(Y xs )ds+

∫ t

0

σ(Y xs )dBs, t < f(x),

then f(x) ≤ e(x) and for every t ≥ 0, Y xt 1t<f(x) = Xx
t 1t<f(x) almost

surely.
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The process (Xx
t )t<e(x) is called the solution of the stochastic differential equa-

tion (6.2) up to the explosion time e(x).

The next proposition shows that solutions of stochastic differential equa-
tions are intrinsically related to a second order differential operator, which will
turn out to be the generator of the Markov process (Xx

t )t≥0.

Proposition 6.9. Let (Xx
t )t≥0 be the solution of a stochastic differential equa-

tion

Xx0
t = x0 +

∫ t

0

b(Xx0
s )ds+

∫ t

0

σ(Xx0
s )dBs,

where b : Rn → Rn and σ : Rn → Rn×n are Borel functions. Let now f : Rn →
Rn be a C2 function. The process

Mf
t = f(Xx

t )−
∫ t

0

Lf(Xx
s )ds,

is a local martingale, where L is the second order differential operator

L =

n∑
i=1

bi(x)
∂

∂xi
+

1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
,

and aij(x) = (σ(x)σ∗(x))ij.

Proof. The proof is as an easy application of the Döblin-Itô formula applied to
f(Xx

t ). 2

2 Continuity and differentiability of stochastic flows

In this section, we study the regularity of the solution of a stochastic differential
equation with respect to its initial condition. The key tool is a multimensional
parameter extension of the Kolmogorov continuity theorem whose proof is al-
most identical to the one-dimensional case and let to the reader as an exercise.

Theorem 6.10. Let (Θx)x∈[0,1]d be a n-dimensional stochastic process such

that there exist positive constants γ, c, ε such that for every x, y ∈ [0, 1]d

E (‖Θx −Θy‖γ) ≤ C‖x− y‖d+ε.

There exists a modification (Θ̃x)x∈[0,1]d of the process (Θx)x∈[0,1]d such that for
every α ∈ [0, ε/γ) there exists a finite random variable Kα such that for every
x, y ∈ [0, 1]d

‖Θ̃x − Θ̃y‖ ≤ Kα‖x− y‖α.
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As above, we consider two functions b : Rn → Rn and σ : Rn×n and we
assume that there exists C > 0 such that

‖b(x)− b(y)‖+ ‖σ(x)− σ(y)‖ ≤ C‖x− y‖, x, y ∈ Rn.

As we already know, for every x ∈ Rn, there exists a continuous and adapted
process (Xx

t )t≥0 such that for t ≥ 0,

Xx
t = x+

∫ t

0

b(Xx
s )ds+

∫ t

0

σ(Xx
s )dBs. (6.3)

Proposition 6.11. Let T > 0. For every p ≥ 2, there exists a constant
Cp,T > 0 such that for every 0 ≤ s ≤ t ≤ T and x, y ∈ Rn,

E (‖Xx
t −Xy

s ‖p) ≤ Cp,T
(
‖x− y‖p + |t− s|p/2

)
As a consequence, there exists a modification (X̃x

t )t≥0,x∈Rn of the process (Xx
t )t≥0,x∈Rn

such that for t ≥ 0, x ∈ Rn,

X̃x
t = x+

∫ t

0

b(X̃x
s )ds+

∫ t

0

σ(X̃x
s )dBs.

and such that (t, x)→ Xx
t (ω) is continuous for almost every ω.

Proof. As before, we can find K > 0 such that

1. ‖b(x)− b(y)‖+ ‖σ(x)− σ(y)‖ ≤ K‖x− y‖, x, y ∈ Rn;

2. ‖b(x)‖+ ‖σ(x)‖ ≤ K(1 + ‖x‖), x ∈ Rn.

We fix x, y ∈ Rn and p ≥ 2. Let

h(t) = E (‖Xx
t −X

y
t ‖p) .

By using the inequality ‖a+ b+ c‖p ≤ 3p−1(‖a‖p + ‖b‖p + ‖c‖p), we obtain

‖Xx
t −X

y
t ‖p

≤3p−1

(
‖x− y‖p +

(∫ t

0

‖b(Xx
s )− b(Xy

s )‖ds
)p

+

∥∥∥∥∫ t

0

(σ(Xx
s )− σ(Xy

s ))dBs

∥∥∥∥p
)
.

We now have(∫ t

0

‖b(Xx
s )− b(Xy

s )‖ds
)p
≤ tp−1

∫ t

0

‖b(Xx
s )−b(Xy

s )‖pds ≤ Kptp−1

∫ t

0

‖Xx
s−Xy

s ‖pds,
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and from Burkholder-Davis-Gundy inequality

E

(∥∥∥∥∫ t

0

(σ(Xx
s )− σ(Xy

s ))dBs

∥∥∥∥p
)
≤ CpE

((∫ t

0

‖σ(Xx
s )− σ(Xy

s )‖2ds
)p/2)

≤ CpK2E

((∫ t

0

‖Xx
s −Xy

s ‖2ds
)p/2)

≤ CpK2tp/2−1E
(∫ t

0

‖Xx
s −Xy

s ‖pds
)
.

As a conclusion we obtain

h(t) ≤ 3p−1

(
‖x− y‖p + (Kptp−1 + CpK

2tp/2−1)

∫ t

0

h(s)ds

)
.

Gronwall’s inequality yields then

h(t) ≤ φ(t)‖x− y‖p,

where φ is a continuous function.
On the other side, we have for 0 ≤ s ≤ t ≤ T ,

‖Xx
t −Xx

s ‖p ≤ 2p−1

(∥∥∥∥∫ t

s

b(Xx
u)ds

∥∥∥∥p +

∥∥∥∥∫ t

s

σ(Xx
u)dBu

∥∥∥∥p
)
,

and ∥∥∥∥∫ t

s

b(Xx
u)ds

∥∥∥∥p ≤ Kp(t− s)p
(

1 + sup
0≤s≤T

‖Xs‖
)p

,

E

(∥∥∥∥∫ t

s

σ(Xx
u)dBu

∥∥∥∥p
)
≤ CpE

((∫ t

s

‖σ(Xx
u)‖2du

)p/2)

≤ CpKp(t− s)p/2E
((

1 + sup
0≤s≤T

‖Xs‖
)p)

.

The conclusion then easily follows by combining the two previous estimates. 2

In the sequel, of course, we shall always work with this bicontinuous version
of the solution.

Definition 6.12. The continuous process of continuous maps Ψt : x→ Xx
t is

called the stochastic flow associated to the equation (6.3).

If the maps b and σ are moreover C1, then the stochastic flow is itself
differentiable and the equation for the derivative can be obtained by formally
differentiating the equation with respect to its initial condition. We willl admit
this result without proof (see [?] for a proof):
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Theorem 6.13. Let us assume that b and σ are C1 Lipschitz functions, then
for every t ≥ 0, the flow Ψt associated to the equation (6.3) is a flow of dif-
ferentiable maps. Moreover, the first variation process Jt(x) which is defined
as the Jacobian matrix ∂Ψt

∂x (x) is the unique solution of the matrix stochastic
differential equation:

Jt(x) = Id +

∫ t

0

∂b

∂x
(Xx

s )Js(x)ds+

n∑
i=1

∫ t

0

∂σi
∂x

(Xx
s )Js(x)dBis.

Exercise 6.14. For x ∈ Rn, let (Kt(x))t≥0 be the unique solution of the matrix
linear stochastic differential equation:

Kt(x) =Id +

n∑
i=1

∫ t

0

Ks(x)

(
∂σi
∂x

)2

(Xx
s )ds−

∫ t

0

Ks(x)
∂b

∂x
(Xx

s )ds

−
n∑
i=1

∫ t

0

Ks(x)
∂σi
∂x

(Xx
s )dBis.

Show that the process (Kt(x)Jt(x))t≥0 is constant and equal to Id. As a con-
sequence, the Jacobian matrix Jt(x) is always almost surely invertible.

3 The Feynman-Kac formula

It is now time to give some applications of the theory of stochastic differential
equations to parabolic second order partial differential equations. In particular
we are going to prove that solutions of such equations can represented by using
solutions of stochastic differential equations. This representation formula is
called the Feynman-Kac formula. As usual, we consider a filtered probability
space (Ω, (Ft)t≥0,F ,P) which satisfies the usual conditions and on which is
defined a n-dimensional Brownian motion (Bt)t≥0. Again, we consider two
functions b : Rn → Rn and σ : Rn×n and we assume that there exists C > 0
such that

‖b(x)− b(y)‖+ ‖σ(x)− σ(y)‖ ≤ C‖x− y‖, x, y ∈ Rn.

Let L be the diffusion operator

L =

n∑
i=1

bi(x)
∂

∂xi
+

1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
,

where aij(x) = (σ(x)σ∗(x))ij .
As we know, there exists a bicontinuous process (Xx

t )t≥0,x∈Rd such that for
t ≥ 0,

Xx
t = x+

∫ t

0

b(Xx
s )ds+

∫ t

0

σ(Xx
s )dBs. (6.4)
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Moreover, as it has been stressed before, for every p ≥ 1, and T ≥ 0

E
(

sup
0≤t≤T

‖Xx
t ‖p
)
< +∞.

As a consequence, if f : Rn → R is a Borel function with polynomial growth,
we can consider the function

Ptf(x) = E(f(Xx
t )).

Theorem 6.15. For every x ∈ Rn, (Xx
t )t≥0,x∈Rd is a Markov process with

semigroup (Pt)t≥0. More precisely, for every Borel function f : Rn → R with
polynomial growth and every t ≥ s,

E(f(Xx
t ) | Fs) = (Pt−sf)(Xx

s ).

Proof. The key point, here, is to observe that solutions are actually adapted to
the natural filtration of the Brownian motion (Bt)t≥0. More precisely, there ex-
ists on the space of continuous functions [0,+∞)→ Rn a predictable functional
such that for t ≥ 0:

Xx0
t = F (x0, (Bu)0≤u≤t).

Indeed, let us first work on [0, T ] where T is small enough. In that case, as seen
previously, the process (Xx0

t )0≤t≤T is the unique fixed point of the application
Φ defined by

Φ(X)t = x0 +

∫ t

0

b(Xx0
s )ds+

∫ t

0

σ(Xx0
s )dBs

Alternatively, one can interpret this by observing that (Xx0
t )0≤t≤T is the

limit of the sequence of processes (Xn
t )0≤t≤T inductively defined by

Xn+1 = Φ(Xn), X0 = x0.

It is easily checked that for each Xn there is a predictable functional Fn such
that

Xn
t = Fn(x0, (Bu)0≤u≤t),

which proves the above claim when T is small enough. To get the existence of
F for any T , we can proceed analogously on the intervals [T, 2T ], [2T, 3T ] and
so on.

With this hands, we can now prove the Markov property. Let s ≥ 0. For
t ≥ 0, we have

Xx0
s+t = Xs +

∫ s+t

s

b(Xx0
u )du+

∫ s+t

s

σ(Xx0
u )dBu

= Xs +

∫ t

0

b(Xx0
u+s)du+

∫ t

0

σ(Xx0
s )d(Bu+s −Bs).



3 The Feynman-Kac formula 199

Consequently, from uniqueness of solutions,

Xx0
s+t = F (Xx0

s , (Bu+s −Bs)0≤u≤t).

We deduce that for a Borel function f : Rn → R with polynomial growth,

E
(
f(Xx0

s+t) | Fs
)

= E (f(F (Xx0
s , (Bu+s −Bs)0≤u≤t)) | Fs) = Ptf(Xx0

s ),

because (Bu+s −Bs)0≤u≤t is a Brownian motion independent of Fs. 2

If the coefficients b and σ are bounded, then solutions of stochastic differen-
tial equations are more than Markov processes, they are Feller-Dynkin diffusion
processes in the sense of Definition 3.33, Chapter 3.

Proposition 6.16. If the functions b and σ are moreover bounded, then, for
every x0 ∈ Rn, (Xx0

t )t≥0 is a Feller-Dynkin diffusion process with infinitesimal
generator

Lf =
1

2

n∑
i,j=1

aij(x)
∂2f

∂xi∂xj
+

n∑
i=1

bi(x)
∂f

∂xi
, f ∈ Cc(Rn,R).

Proof. We first need to prove that (Pt)t≥0 is a Feller-Dynkin semigroup. Let
f ∈ C0(Rn,R). First, it is clear that the function Pt is continuous. We now
have for x ∈ Rn and r > 0,

|Ptf(x)| ≤ sup
y∈B(x,r)

|f(y)|+ ‖f‖∞P (‖Xx
t − x‖ > r)

and,

P (‖Xx
t − x‖ > r) ≤ 1

r2
E
(
‖Xx

t − x‖2
)

≤ 2

r2

(
E

(∥∥∥∥∫ t

0

b(Xx
s )ds

∥∥∥∥2
)

+ E
(∫ t

0

‖σ(Xx
s )‖2 ds

))

≤ 2M

r2
(t+ t2),

where M is a common upper bound for b and σ. By letting x and then r to∞,
we conclude that Ptf ∈ C0(Rn,R). Thus Pt is a Feller-Dynkin semigroup. Let
us compute its generator on Cc(Rn,R). Let f ∈ Cc(Rn,R). From Itô’s formula
we have

f(Xx
t ) = f(x) +

∫ t

0

Lf(Xx
s )ds+Mt,

where Mt is a martingale. As a consequence, by taking expectations, we obtain

Ptf(x) = f(x) +

∫ t

0

PsLf(x)ds.
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This implies that

lim
t→0

∥∥∥∥Ptf − f
t

− Lf
∥∥∥∥
∞

= 0.

Thus the domain of the generator of Pt contains Cc(Rn,R) and on that space
is equal to L. 2

Theorem 6.17. Let f : Rn → R be a Borel function with polynomial growth
and assume that the function

u(t, x) = (Ptf)(x)

is C1,2, that is once differentiable with respect to t and twice differentiable with
respect to x. Then u solves the Cauchy problem

∂u

∂t
(t, x) = Lu(t, x)

in [0,+∞)× Rn, with the initial condition

u(0, x) = f(x).

Proof. Let T > 0 and consider the function v(t, x) = u(T − t, x). According
the previous theorem, we have

E(f(Xx
T ) | Ft) = v(t,Xx

t ).

As a consequence, the process v(t,Xx
t ) is a martingale. But from Döblin-Itô’s

formula the bounded variation part of v(t,Xx
t ) is

∫ t
0

(
∂v
∂t (s,Xx

s ) + Lv(s,Xx
s )
)
ds

which is therefore 0. We conclude

∂v

∂t
(0, x) + Lv(0, x) = lim

t→0

1

t

∫ t

0

(
∂v

∂t
(s,Xx

s ) + Lv(s,Xx
s )

)
ds = 0.

2

Exercise 6.18. Show that if f is a C2 function such that ∇f and ∇2f have
polynomial growth, then the function Ptf(x) is C1,2. Here, we denote by ∇2f
the Hessian matrix of f .

Theorem 6.19. Let f : Rn → R be a Borel function with polynomial growth.
Let u : [0,+∞)× Rn → R be a solution of the Cauchy problem

∂u

∂t
(t, x) = Lu(t, x)

with the initial condition
u(0, x) = f(x).

If there exists a locally integrable function C and p ≥ 0, such that for every
t ≥ 0 and x ∈ Rn,

‖∇u(t, x)‖ ≤ C(t)(1 + ‖x‖p),
then u(t, x) = Ptf(x).
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Proof. Let T > 0 and, as before consider the function v(t, x) = u(T − t, x). As
a consequence of Itô’s formula, we have

v(t,Xx
t ) = u(T, x) +Mt,

where Mt is a local martingale with quadratic variation

n∑
i,j

∫ t

0

aij(X
x
s )
∂u

∂xi
(Xx

s )
∂u

∂xj
(Xx

s )ds.

The conditions on σ and u imply that this quadratic variation is integrable. As
a consequence, v(t,Xx

t ) is a martingale and thus E(v(T,Xx
t )) = u(T, x). 2

The previous results may be extended to study parabolic equations with
potential as well. More precisely, let V : Rn → R be a bounded function. If
f : Rn → R is a Borel function with polynomial growth, we define

PV
t f(x) = E

(
e
∫ t
0
V (Xxs )dsf(Xx

t )
)
.

The same proofs as before will give the following theorems.

Theorem 6.20. For every x ∈ Rn and every Borel function f : Rn → R with
polynomial growth and every t ≥ s,

E
(
e
∫ t
0
V (Xxu)duf(Xx

t ) | Fs
)

= e
∫ s
0
V (Xxu)du(PV

t−sf)(Xx
s ).

Theorem 6.21 (Feynman-Kac formula). Let f : Rn → R be a Borel function
with polynomial growth and assume that the function

u(t, x) = (PV
t f)(x)

is C1,2, that is once differentiable with respect to t and twice differentiable with
respect to x. Then u solves the Cauchy problem

∂u

∂t
(t, x) = Lu(t, x) + V (x)u(t, x)

in [0,+∞)× Rn, with the initial condition

u(0, x) = f(x).

Theorem 6.22. Let f : Rn → R be a Borel function with polynomial growth.
Let u : [0,+∞)× Rn → R be a solution of the Cauchy problem

∂u

∂t
(t, x) = Lu(t, x) + V (x)u(t, x)
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with the initial condition
u(0, x) = f(x).

If there exists a locally integrable function C and p ≥ 0, such that for every
t ≥ 0 and x ∈ Rn,

‖∇u(t, x)‖ ≤ C(t)(1 + ‖x‖p),
then u(t, x) = PV

t f(x).

Exercise 6.23 (Arcsine law). Let (Bt)t≥0 be a standard Brownian motion and
λ, α ∈ R. We denote

ν(x) = E
(∫ +∞

0

exp

(
−λt− α

∫ t

0

1[0,+∞)(Bs + x)ds

)
dt

)
.

1. Show that ν is the unique solution of the differential equation

y′′ − (α1[0,+∞) + λ)y = 1,

that satisfies,

lim
x→+∞

ν(x) =
1

α+ λ
, lim

x→−∞
ν(x) =

1

λ
.

2. Deduce that ∫ +∞

0

e−λtE(e−αtAt)dt =
1

λ

λ+
√
λ(α+ λ)

α+ λ+
√
λ(α+ λ)

,

where At = 1
t

∫ t
0

1[0,+∞)(Bs)ds.

3. Conclude that the density of At is given by

s→ 1

π
√
s(1− s)

, s ∈ (0, 1).

This is the arc-sine law for Brownian motion paths that was already
proved in Theorem 2.51, Chapter 2 by using random walks.

Exercise 6.24 (Exponential functional). Let (Bt)t≥0 be a standard Brownian
motion and µ > 0. We denote

A∞ =

∫ +∞

0

e−2(Bt+µt)dt.

1. Let h(x) = eµxE
(
exp

(
− 1

2e
−2xA∞

))
. Show that h is the unique solution

of the differential equation(
d2

dx2
− e−2x

)
h = µ2h,

such that h(x) ∼x→+∞ eµx.
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2. Deduce that

h(x) =
21−µ

Γ(µ)
Kµ(e−x),

where Kµ is the Mac-Donald function

Kµ(x) =
1

2

(x
2

)µ ∫ +∞

0

e−
x2

4t −t

t1+µ
dt.

3. Compute the density of A∞.

4. Consider the process (ρt)t≥0 such that for every t ≥ 0,

e−Bt−µt = ρ∫ t
0
e−2(Bs+µs)ds.

Show that the process

ρt −
∫ t

0

−µ+ 1
2

ρs
ds,

is a Brownian motion. The process (ρt)t≥0 is called a Bessel process (see
Exercises 3.8 and 5.59).

5. By using A∞, compute the density of the stopping time

T0 = inf{t ≥ 0, ρt = 0}.

4 The strong Markov property of solutions

In the previous section, we have seen that if (Xx
t )t≥0 is the solution of a stochas-

tic differential equation

Xx
t = x+

∫ t

0

b(Xx
s )ds+

∫ t

0

σ(Xx
s )dBs, (6.5)

then (Xx
t )t≥0 is a Markov process, that is for every t, T ≥ 0,

E(f(Xx
t+T ) | FT ) = (Ptf)(Xx

T ),

where Ptf(x) = E(f(Xx
t )). It is remarkable that this property still holds when

T is now any finite stopping time; That is solutions of stochastic differential
equations enjoy the strong Markov property. The key lemma is Proposition
3.20 in Chapter 3.

Theorem 6.25. For every x ∈ Rn, (Xx
t )t≥0,x∈Rd is a strong Markov process

with semigroup (Pt)t≥0: For every Borel function f : Rn → R with polynomial
growth, every t ≥ 0, and every finite stopping time T ,

E(f(Xx
t+T ) | FT ) = (Ptf)(Xx

T ).
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Proof. The proof is identical to the proof of Theorem 6.15 with the additional
ingredient given by the Proposition 3.20 in Chapter 2. 2

Exercise 6.26. Let b : Rn → Rn, and σ : Rn → Rn×n be locally Lipschitz
functions and consider the solution of the stochastic differential equation,

Xx
t = x+

∫ t

0

b(Xx
s )ds+

∫ t

0

σ(Xx
s )dBs,

up to the explosion time e(x) (see Exercise 6.8). Show that (Xt)t<e(x) is a
submarkov process with semigroup

Ptf(x) = E(f(Xx
t )1t<e(x))

The strong Markov property for solutions of stochastic differential equa-
tions is useful to solve boundary value problems in partial differential equa-
tions theory. Let K be a bounded closed set in Rn. For x ∈ Ω, we denote
Tx = inf{t ≥ 0, Xt ∈ ∂K}. If f is bounded Borel function such that f∂K = 0,
we define

PK
t f(x) = E (f(Xx

t )1t≤Tx)

The proof of the following theorem is let to the reader.

Theorem 6.27. Let f : K → R be a bounded Borel function and assume that
the function

u(t, x) = (PK
t f)(x)

is C1,2. Then u is the unique solution of the Dirichlet boundary value problem

∂u

∂t
(t, x) = Lu(t, x)

in [0,+∞)× Rn, with the initial condition

u(0, x) = f(x),

and the boundary condition

u(t, x) = 0, x ∈ ∂K.

5 Stratonovitch stochastic differential equations and the
language of vector fields

As usual, let (Ω, (Ft)t≥0,P) be a filtered probability space which satisfies the
usual conditions. It is often useful to use the language of Stratonovitch’s in-
tegration to study stochastic differential equations because the Itô’s formula
takes a much nicer form. If (Nt)0≤t≤T , T > 0, is an F-adapted real valued
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local martingale and if (Θt)0≤t≤T is an F-adapted continuous semimartingale
then the Stratonovitch integral of (Θt)0≤t≤T with respect to (Nt)t≥0 is given
as ∫ T

0

Θt ◦ dNt =

∫ T

0

ΘtdNt +
1

2
〈Θ, N〉T ,

where:

1.
∫ T

0
ΘtdNt is the Itô integral of (Θt)0≤t≤T against (Nt)0≤t≤T ;

2. 〈Θ, N〉T is the quadratic covariation at time T between (Θt)0≤t≤T and
(Nt)0≤t≤T .

By using Stratonovitch integral instead of Itô’s, we can see that the Döblin-
Itô formula reduces to the classical change of variable formula.

Theorem 6.28. Let (Xt)t≥0 =
(
X1
t , · · · , Xn

t

)
t≥0

be a n- dimensional contin-

uous semimartingale. Let now f : Rn → R be a C2 function. We have

f(Xt) = f(X0) +

n∑
i=1

∫ t

0

∂f

∂xi
(Xs) ◦ dXi

s, t ≥ 0.

Let O ⊂ Rn be a non empty open set. A smooth vector field V on O is
simply a smooth map

V : O → Rn
x → (v1(x), ..., vn(x)).

The vector field V defines a differential operator acting on smooth functions
f : O → R as follows:

V f(x) =

n∑
i=1

vi(x)
∂f

∂xi
.

We note that V is a derivation, that is a map on C∞(O,R), linear over R,
satisfying for f, g ∈ C∞(O,R),

V (fg) = (V f)g + f(V g).

Interestingly, conversely, any derivation on C∞(O,R) is a vector field.
Let now

(Bt)t≥0 = (B1
t , ..., B

d
t )t≥0

be a d-dimensional Brownian motion and consider d + 1 C1 vector fields Vi :
Rn → Rn, n ≥ 1, i = 0, ..., d. By using the language of vector fields and
Stratonovitch integrals, the fundamental theorem for the existence and the
uniqueness of solutions for stochastic differential equations is the following:
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Theorem 6.29. Assume that V0, V1, · · · , Vd are C2 vector fields with bounded
derivatives up to order 2. Let x0 ∈ Rn. On (Ω, (Ft)t≥0,P), there exists a
unique continuous and adapted process (Xx0

t )t≥0 such that for t ≥ 0,

Xx0
t = x0 +

d∑
i=0

∫ t

0

Vi(X
x0
s ) ◦ dBis, (6.6)

with the convention that B0
t = t.

Thanks to Döblin-Itô’s formula the Itô’s formulation of a Stratonovitch
equation is

Xx0
t = x0 +

1

2

d∑
i=1

∫ t

0

∇ViVi(Xx0
s )ds+

d∑
i=0

∫ t

0

Vi(X
x0
s )dBis,

where for 1 ≤ i ≤ d, ∇ViVi is the vector field given by

∇ViVi(x) =

n∑
j=1

(
n∑
k=1

vki (x)
∂vji
∂xk

(x)

)
∂

∂xj
, x ∈ Rn.

If f : Rn → R is a C2 function, from Itô’s formula, we have for t ≥ 0,

f(Xx0
t ) = f(x0) +

d∑
i=0

∫ t

0

(Vif)(Xx0
s ) ◦ dBis,

and the process (
f(Xx0

t )−
∫ t

0

(Lf)(Xx0
s )ds

)
t≥0

is a local martingale where L is the second order differential operator

L = V0 +
1

2

d∑
i=1

V 2
i .

Exercise 6.30. Let (B1
t , B

2
t )t≥0 be a two-dimensional Brownian motion. Show

that the process

Xt =

(
B1
t , B

2
t ,

1

2

∫ t

0

B1
sdB

2
s −B2

sdB
1
s

)
t≥0

,

solves a stochastic differential equation that may be written

dXt = V1(Xt) ◦ dB1
t + V2(Xt) ◦ dB2

t

where V1, V2 are two vector fields to be computed.
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Exercise 6.31. Show that the diffusion operator

L = V0 +
1

2

n∑
i=1

V 2
i

is elliptic in Rn if and only if for every x ∈ Rn, the vectors V1(x), · · · , Vn(x)
form a basis of Rn.

A general theorem by Phillips and Sarason states that if L is a diffusion
operator

L =
1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
,

where the coefficients aij ’s and bi’s are two times continuously differentiable,
then L can be written as

L = V0 +
1

2

n∑
i=1

V 2
i

where V1, · · · , Vn’ are locally Lipschitz vector fields. In this book we are mostly
interested in elliptic operators, in that case we have the following stronger
result:

Proposition 6.32. Let

L =
1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
,

be a diffusion operator on Rn such that the aij’s and the bi’s are smooth
functions. Let us assume that for every x ∈ Rn, the rank of the matrix
(aij(x))1≤i,j≤n is constant equal to n. Then, there exist smooth vector fields
V0, V1, · · · , Vn on Rn such that V1, · · · , Vn are linearly independent and

L = V0 +

n∑
i=1

V 2
i .

Proof. Since the matrix (aij(x))1≤i,j≤n is symmetric and positive, it admits
a unique symmetric and positive square root v(x) = (vij(x))1≤i,j≤n. Let us
assume for a moment that the vij ’s are smooth functions, in that case by
denoting

Vi =

n∑
j=1

vij
∂

∂xj
,

the vector fields V1, · · · , Vn are linearly independent and it is readily seen that
the differential operator

L− 1

2

n∑
i=1

V 2
i



208 6 Stochastic differential equations and Malliavin calculus

is actually a first order differential operator and thus a vector field. We therefore
are let to prove that the vij ’s are smooth functions. Let O be a bounded non
empty set of Rn and Γ be any contour in the half plane Re(z) > 0 that contains
all the eigenvalues of σ(x), x ∈ O. We claim that

v(x) =
1

2π

∫
Γ

√
z(σ(x)− zIn)−1dz, x ∈ O.

Indeed, if Γ′ is another contour in the half plane Re(z) > 0 whose interior con-
tains Γ, as a straightforward application of the Fubini’s theorem and Cauchy’s
formula we have

1

2π

∫
Γ

√
z(σ(x)− zIn)−1dz × 1

2π

∫
Γ′

√
z(σ(x)− zIn)−1dz

=
1

4π2

∫
Γ

∫
Γ′

√
zz′(σ(x)− zIn)−1(σ(x)− z′In)−1dzdz′

=
1

4π2

∫
Γ

∫
Γ′

√
zz′

(σ(x)− zIn)−1 − (σ(x)− z′In)−1

z − z′
dzdz′

=− 1

4π2

∫
Γ

∫
Γ′

√
zz′

(σ(x)− zIn)−1

z′ − z
dz′dz

=− 1

4π2

∫
Γ

(σ(x)− zIn)−1

(∫
Γ′

√
zz′

z′ − z
dz′

)
dz

=
1

2iπ

∫
Γ

(σ(x)− zIn)−1zdz

=
1

2iπ

∫
Γ

(σ(x)− zIn)−1σ(x)dz.

In the last expression above, we may modify Γ into a circle ΓR = {z, |z| =
R}. Then by chosing R big enough (R > supx∈O

√
‖σ(x)‖), and expanding∫

Γ
(σ(x)− zIn)−1dz in powers of z, we see that

1

2iπ

∫
ΓR

(σ(x)− zIn)−1dz = σ(x).

As a conclusion, (
1

2π

∫
Γ

√
z(σ(x)− zIn)−1dz

)2

= σ(x),

so that, as we claimed it,

v(x) =
1

2π

∫
Γ

√
z(σ(x)− zIn)−1dz, x ∈ O.

This expression of the square root of σ clearly shows that the vij ’s are smooth
functions. 2
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Exercise 6.33. Prove the following extension of the above theorem. Let

L =
1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
,

be a diffusion operator on Rn such that the aij’s and the bi’s are smooth
functions. Let us assume that for every x ∈ Rn, the rank of the matrix
(aij(x))1≤i,j≤n is constant equal to d ≤ n. Then, there exist smooth vector
fields V0, V1, · · · , Vd on Rn such that V1, · · · , Vd are linearly independent and

L = V0 +
1

2

d∑
i=1

V 2
i .

6 Malliavin calculus

This section is an introduction to the techniques of the so-called Malliavin
calculus. Our eventual goal will be to prove that if (Xx

t )t≥0 is the solution of
a stochastic differential equation

Xx
t = x+

∫ t

0

b(Xx
s )ds+

∫ t

0

σ(Xx
s )dBs,

where b : Rn → Rn and σ : Rn → Rn×n are smooth functions with bounded
derivatives and if the matrix σ(x) is uniformly elliptic, then for every t > 0
the random variable Xx

t has a smooth density with respect to the Lebesgue
measure (see Theorem 6.51).

This Theorem 6.51 actually provides a probabilistic proof of the hypoel-
lipticity of elliptic operators (see the Appendix on Regularity theory for the
relevant definitions). Indeed, let L be the diffusion operator

L =

n∑
i=1

bi(x)
∂

∂xi
+

1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
,

where aij(x) = (σ(x)σ∗(x))ij . If L is elliptic, then Theorem 6.51 implies that
for every x ∈ Rn and t > 0 the random variable Xx

t has a smooth density with
respect to the Lebesgue measure. In other words, there exists a smooth kernel
p(t, x, y) such that for every bounded and Borel function f

E(f(Xx
t )) = Ptf(x) =

∫
Rn
p(t, x, y)f(y),

Combining this fact with the interpretation of Ptf as the solution of a Cauchy
problem, we see that the operator L− ∂

∂t needs to be hypoelliptic which implies
the hypoellipticity of L. The fact that elliptic operators are hypoelliptic is a
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special case of a celebrated theorem by Hörmander and the motivation of Malli-
avin to introduce his calculus was actually precisely to reprove Hörmander’s
result by using probabilistic techniques (see [?]).

We can also observe that Theorem 6.51 implies the Theorem 4.23 that we
proved in Chapter 4 in the case where L is essentially self-adjoint. It should be
observed that the advantage of the probabilistic method is that L is not required
to be symmetric with respect to any measure, however strong assumptions are
required on the coefficients b and σ.

6.1 The Malliavin derivative

In this section, we introduce the basic tools of Malliavin calculus, which is a set
of tools devoted to the study of the Sobolev regularity of Brownian functionals.
This is just an introduction to this theory. The interested reader is refered to
the classical book [?] by Nualart for a detailed presentation of the theory.

Let us consider a filtered probability space (Ω, (Ft)0≤t≤1,P) on which is de-
fined a n-dimensional Brownian motion (Bt)0≤t≤1. We assume that (Ft)0≤t≤1

is the usual completion of the natural filtration of (Bt)0≤t≤1.
A F1 measurable real valued random variable F is said to be cylindric if it

can be written

F = f

(∫ 1

0

h1(s)dBs, ...,

∫ 1

0

hm(s)dBs

)
where hi ∈ L2([0, 1],Rn) and f : Rm → R is a C∞ function such that f and
all its partial derivatives have polynomial growth. The set of cylindric random
variables is denoted by S. It is easy to see that S is dense in Lp(F1,P) for
every p ≥ 1.

The Malliavin derivative of F ∈ S is the Rn valued stochastic process
(DtF )0≤t≤1 given by

DtF =

m∑
i=1

hi(t)
∂f

∂xi

(∫ 1

0

h1(s)dBs, ...,

∫ 1

0

hm(s)dBs.

)
.

We can see D as an (unbounded) operator from the space S ⊂ Lp(F1,P) into
the Banach space

Lp =

{
(Xt)0≤t≤1,E

((∫ 1

0

‖Xt‖2dt
)p)

< +∞

}
.

Our first task will be to prove that D is closable (see the Appendix on un-
bounded operators for the definition of closability). This will be a consequence
of the following fundamental integration by parts formula which is interesting
in itself.
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Proposition 6.34 (Integration by parts formula). Let F ∈ S and (h(s))0≤s≤1

be a progressively measurable such that E
(∫ 1

0
‖h(s)‖2ds

)
< +∞. We have

E
(∫ 1

0

(DsF )h(s)ds

)
= E

(
F

∫ 1

0

h(s)dBs

)
.

Proof. Let

F = f

(∫ 1

0

h1(s)dBs, ...,

∫ 1

0

hm(s)dBs

)
∈ S.

Let us now fix ε ≥ 0 and denote

Fε = f

(∫ 1

0

h1(s)d

(
Bs + ε

∫ s

0

h(u)du

)
, ...,

∫ 1

0

hm(s)d

(
Bs + ε

∫ s

0

h(u)du

))
.

From Girsanov’s theorem (Theorem 5.72 in Chapter 3), we have

E(Fε) = E
(

exp

(
ε

∫ 1

0

h(u)dBu −
ε2

2

∫ 1

0

‖h(u)‖2du
)
F

)
.

Now, on one hand we compute

lim
ε→0

1

ε
(E(Fε)− E(F ))

=E

(∫ 1

0

m∑
i=1

∂f

∂xi

(∫ 1

0

h1(s)dBs, ...,

∫ 1

0

hm(s)dBs

)
hi(s)h(s)dt

)

=E
(∫ 1

0

(DsF )h(s)dt

)
,

and on the other hand, we obtain

lim
ε→0

1

ε
(E(Fε)− E(F )) = E

(
F

∫ 1

0

h(s)dBs

)
.

2

Proposition 6.35. Let p ≥ 1. As a densely defined operator from Lp(F1,P)
into Lp, D is closable.

Proof. Let (Fn)n∈N be a sequence in S that converges in Lp(F1,P) to 0 and
such that DFn converges in Lp to X. We want to prove that X = 0. Let
(h(s))0≤s≤1 be a function in L2([0, 1]). Let us first assume p > 1. We have

lim
n→∞

E
(∫ 1

0

(DsFn)h(s)ds

)
= E

(∫ 1

0

Xsh(s)ds

)
,
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and

lim
n→∞

E
(
Fn

∫ 1

0

h(s)dBs

)
= 0.

As a consequence, we obtain

E
(∫ 1

0

Xsh(s)ds

)
= 0.

Since h is arbitrary, we conclude X = 0. Let us now assume p = 1. Let η be

a smooth and compactly supported function and let Θ = η
(∫ 1

0
h(s)dBs

)
∈ S.

We have

D(FnΘ) = Fn(DΘ) + (DFn)Θ.

As a consequence, we get

E
(∫ 1

0

Ds(FnΘ)h(s)ds

)
= E

(
Fn

∫ 1

0

(DsΘ)h(s)ds

)
+E

(
Θ

∫ 1

0

(DsFn)h(s)ds

)
,

and thus

lim
n→∞

E
(∫ 1

0

Ds(FnΘ)h(s)ds

)
= E

(
Θ

∫ 1

0

Xsh(s)ds

)
.

On the other hand, we have

E
(∫ 1

0

Ds(FnΘ)h(s)ds

)
= E

(
FnΘ

∫ 1

0

h(s)dBs

)
→n→∞ 0.

We conclude

E
(

Θ

∫ 1

0

Xsh(s)ds

)
= 0.

2

The closure of D in Lp(F1,P) shall still be denoted by D. Its domain D1,p

is the closure of S with respect to the norm

‖F‖1,p =
(
E (F p) + E

(
‖DF‖pL2([0,1],Rn)

)) 1
p

,

For p > 1, we can consider the adjoint operator δ of D. This is a densely
defined operator Lq → Lp(F1,P) with 1/p+ 1/q = 1 which is characterized by
the duality formula

E(Fδu) = E
(∫ 1

0

(DsF )usds

)
, F ∈ D1,p.
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From Proposition 6.34 and Burkholder-Davis-Gundy inequalities, it is clear
that the domain of δ in Lq contains the set of progressively measurable processes

(ut)0≤t≤1 such that E
((∫ 1

0
‖us‖2ds

)q/2)
< +∞ and that in this case,

δu =

∫ 1

0

usdBs.

The operator δ can thus be thought as an extension of the Itô’s integral. It is
often called the Skohorod integral or the divergence operator.

Exercise 6.36 (Clark-Ocone formula). Show that for F ∈ D1,2,

F = E(F ) +

∫ 1

0

E (D1F | Ft) dBt.

More generally, we can introduce iterated derivatives. If F ∈ S, we set

Dk
t1,...,tk

F = Dt1 ...DtkF.

We may consider DkF as a square integrable random process indexed by [0, 1]k

and valued in Rn. For any p ≥ 1, the operator Dk is closable on S. We denote
Dk,p the closure of the class of cylindric random variables with respect to the
norm

‖F‖k,p =

E (F p) +

k∑
j=1

E
(∥∥DjF

∥∥p
L2([0,1]j ,Rn)

) 1
p

,

and
D∞ =

⋂
p≥1

⋂
k≥1

Dk,p.

6.2 The Wiener chaos expansion

As in the previous section, we consider a filtered probability space (Ω, (Ft)0≤t≤1,P)
on which is defined a Brownian motion (Bt)0≤t≤1, and we assume that (Ft)0≤t≤1

is the usual completion of the natural filtration of (Bt)0≤t≤1. Our goal is here
to write an orthogonal decomposition of the space L2(F1,P) that is particu-
larly suited to the study of the space D1,2. For simplicity of the exposition,
we restrict ourselves to the case where the Brownian motion (Bt)0≤t≤1 is one-
dimensional but similar results obviously hold in higher dimensions provided
the suitable changes are made.

In the sequel, for n ≥ 1, we denote by ∆n the simplex

∆n = {0 ≤ t1 ≤ · · · ≤ tn ≤ 1}
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and if fn ∈ L2(∆n),

In(fn) =

∫ 1

0

∫ tn

0

· · ·
∫ t2

0

fn(t1, · · · , tn)dBt1 ...dBtn

=

∫
∆n

fn(t1, · · · , tn)dBt1 ...dBtn .

The set

Kn =

{∫
∆n

fn(t1, · · · , tn)dBt1 ...dBtn , fn ∈ L2(∆n)

}
is called the space of chaos of order n. By convention the set of contant random
variables shall be denoted by K0.

By using the Itô’s isometry, we readily compute that

E (In(fn)Ip(fp)) =

{
0 if p 6= n

‖fn‖2L2(∆n) if p = n.

As a consequence, the spaces Kn are orthogonal in L2(F1,P). It is easily seen
that Kn is the closure of the linear span of the family{

In(f⊗n), f ∈ L2([0, 1])
}
,

where for f ∈ L2([0, 1]), we denoted by f⊗n the map ∆n → R such that
f⊗n(t1, · · · , tn) = f(t1) · · · f(tn). It turns out that In(f⊗n) can be computed
by using Hermite polynomials. The Hermite polynomial of order n is defined
as

Hn(x) = (−1)n
1

n!
e
x2

2
dn

dxn
e−

x2

2 .

By the very definition of Hn, we see that for every t, x ∈ R,

exp

(
tx− t2

2

)
=

+∞∑
k=0

tkHk(x).

Lemma 6.37. If f ∈ L2([0, 1]) then

In(f⊗n) = ‖f‖nL2([0,1])Hn

(∫ 1

0
f(s)dBs

‖f‖L2([0,1])

)
.

Proof. On one hand, we have for λ ∈ R,

exp

(
λ

∫ 1

0

f(s)dBs −
λ2

2

∫ 1

0

f(s)2ds

)
=

+∞∑
n=0

λn‖f‖nL2([0,1])Hn

(∫ 1

0
f(s)dBs

‖f‖L2([0,1])

)
.
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On the other hand, for 0 ≤ t ≤ 1, let us consider

Mt(λ) = exp

(
λ

∫ t

0

f(s)dBs −
λ2

2

∫ t

0

f(s)2ds

)
.

From Itô’s formula, we have

Mt(λ) = 1 + λ

∫ t

0

Msf(s)dBs.

By iterating the previous linear relation, we easily obtain that for every n ≥ 1,

M1(λ)

=1 +
n∑
k=1

λkIk(f⊗k) + λn+1

∫ 1

0

Mtf(t)

(∫
∆n([0,t])

f(t1) · · · f(tn)dBt1 ...dBtn

)
dBt.

We conclude,

In(f⊗n) =
1

n!

dkM1

dλn
(0) = ‖f‖nL2([0,1])Hn

(∫ 1

0
f(s)dBs

‖f‖L2([0,1])

)
.

2

As we pointed it out, for p 6= n, the spaces Kn and Kp are othogonal. We
have the following orthogonal decomposition of L2:

Theorem 6.38 (Wiener chaos expansion).

L2(F1,P) =
⊕
n≥0

Kn.

Proof. As a by-product of the previous proof, we easily obtain that for f ∈
L2([0, 1]),

exp

(
λ

∫ 1

0

f(s)dBs −
λ2

2

∫ 1

0

f(s)2ds

)
=

+∞∑
n=1

In(f⊗n),

where the convergence of the series is almost sure but also in L2(F1,P). There-
fore, if F ∈ L2(F1,P) is orthogonal to

⊕
n≥1 Kn, then F is orthogonal to

every exp
(
λ
∫ 1

0
f(s)dBs − λ2

2

∫ 1

0
f(s)2ds

)
, f ∈ L2([0, 1]). This implies that

F = 0. 2

As we are going to see, the space D1,2 or more generally Dk,2 is easy to
describe by using the Wiener chaos expansion. The keypoint is the following
proposition:



216 6 Stochastic differential equations and Malliavin calculus

Proposition 6.39. Let F = In(fn) ∈ Kn, then F ∈ D1,2 and

DtF = In−1(f̃n(·, t)),

where for 0 ≤ t1 ≤ · · · ≤ tn−1 ≤ 1,

f̃n(t1, · · · , tn−1, t) = fn(t1, · · · , tk, t, tk+1, · · · , tn−1) if tk ≤ t ≤ tk+1.

Proof. Let f ∈ L2([0, 1]). We have

In(f⊗n) = ‖f‖nL2([0,1])Hn

(∫ 1

0
f(s)dBs

‖f‖L2([0,1])

)
.

Thus F = In(f⊗n) is a smooth cylindric functional and

DtF = ‖f‖n−1
L2([0,1])f(t)H ′n

(∫ 1

0
f(s)dBs

‖f‖L2([0,1])

)
.

It is easy to see that H ′n = Hn−1, therefore we have

DtF = ‖f‖n−1
L2([0,1])f(t)Hn−1

(∫ 1

0
f(s)dBs

‖f‖L2([0,1])

)
= f(t)In−1(f⊗(n−1)).

As a consequence, we compute that

E
(∫ 1

0

(DtF )2dt

)
= nE(F 2).

We now observe that Kn is the closure in L2(F1,P) of the linear span of the
family {

In(f⊗n), f ∈ L2([0, 1])
}

to conclude the proof of the proposition. 2

We can finally turn to the description of D1,2 using the chaos decomposition:

Theorem 6.40. Let F ∈ L2(F1,P) and let

F = E(F ) +
∑
m≥1

Im(fm),

be the chaotic decomposition of F . Then F ∈ D1,2 if and only if∑
m≥1

mE
(
Im(fm)2

)
< +∞,

and in that case,

DtF = E(DtF ) +
∑
m≥2

Im−1(f̃m(·, t)).
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Proof. It is a consequence of the fact that for F ∈ Kn,

E
(∫ 1

0

(DtF )2dt

)
= nE(F 2).

2

An immediate but useful corollary of the previous theorem is the following
result:

Corollary 6.41. Let (Fn)n≥0 be a sequence in D1,2 that converges to F in
L2(F1,P) and such that

sup
n≥0

E
(∫ 1

0

(DtFn)2dt

)
< +∞.

Then, F ∈ D1,2.

This corollary can actually be generalized in the following way (see [?] for
a proof).

Proposition 6.42. Let (Fn)n≥0 be a sequence in Dk,p, k ≥ 1, p > 1, that
converges to F in Lp(F1,P) and such that

sup
n≥0
‖Fn‖k,p < +∞.

Then, F ∈ Dk,p.

Exercise 6.43. Let F ∈ L2(F1,P) and let

F = E(F ) +
∑
m≥1

Im(fm),

be the chaotic decomposition of F . Show that that F ∈ Dk,2 with k ≥ 1 if and
only if ∑

m≥1

mkE
(
Im(fm)2

)
< +∞.

Exercise 6.44. Let L = δD. Show that for F ∈ Kn, LF = nF . Deduce that
the domain of L in L2(F1,P) is D2,2

6.3 Regularity of probability distributions using Malliavin
calculus

We have the following key result which makes Malliavin calculus so useful when
one wants to study the existence of densities for random variables.
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Theorem 6.45. Let F = (F1, ..., Fm) be a F1 measurable random vector such
that:

1. for every i = 1, ...,m, Fi ∈ D∞;

2. the matrix

Γ =

(∫ 1

0

〈DsF
i,DsF

j〉Rnds
)

1≤i,j≤m

is invertible.

Then F has a density with respect to the Lebesgue measure. If moreover, for
every p > 1,

E
(

1

| det Γ |p

)
< +∞,

then this density is smooth.

Remark 6.46. The matrix Γ is often called the Malliavin matrix of the random
vector F .

This theorem relies on the following lemma of Fourier analysis for which we
shall use the following notation: If φ : Rn → R is a smooth function then for
α = (i1, ..., ik) ∈ {1, ..., n}k, we denote

∂αφ =
∂k

∂xi1 · · · ∂xik
φ.

Lemma 6.47. Let µ be a probability measure on Rn such that for every smooth
and compactly supported function φ : Rn → R,∣∣∣∣∫

Rn
∂αφdµ

∣∣∣∣ ≤ Cα‖φ‖∞,
where α ∈ {1, ..., n}k, k ≥ 1, Cα > 0. Then µ is absolutely continuous with
respect to the Lebesgue measure with a smooth density.

Proof. The idea is to show that we may assume that µ is compactly supported
and then use Fourier transforms techniques. Let x0 ∈ Rn, R > 0 and R′ > R.
Let Ψ be a smooth function on Rn such that Ψ = 1 on the ball B(x0, R) and
Ψ = 0 outside the ball B(x0, R

′). Let ν be the measure on Rn that has a
density Ψ with respect to µ. It is easily seen, by induction and integrating by
parts that for every smooth and compactly supported function φ : Rn → R,∣∣∣∣∫

Rn
∂αφdν

∣∣∣∣ ≤ C ′α‖φ‖∞,
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where α ∈ {1, ..., n}k, k ≥ 1, C ′α > 0. Now, if we can prove that under the
above assumption ν has a smooth density, then we will able to conclude that
φ has a smooth density because x0 ∈ Rn and R,R′ are arbitrary. Let

ν̂(y) =

∫
Rn
ei〈y,x〉ν(dx)

be the Fourier transform of the measure µ. The assumption implies that ν̂ is
rapidly decreasing (apply the inequality with φ(x) = ei〈y,x〉). We conclude that
ν has a smooth density with respect to the Lebesgue measure and that this
density f is given by the inverse Fourier transform formula:

f(x) =
1

(2π)n

∫
Rn
e−i〈y,x〉ν̂(y)dy.

2

We may now turn to the proof of Theorem 6.45.

Proof. The proof relies on an integration by parts formula which is interesting
by itself. Let φ be a smooth and compactly supported function on Rn. Since
Fi ∈ D∞, we easily deduce that φ(F ) ∈ D∞ and that

Dφ(F ) =

n∑
i=1

∂iφ(F )DFi.

Therefore we obtain∫ 1

0

〈Dtφ(F ),DtFj〉dt =

n∑
i=1

∂iφ(F )

∫ 1

0

〈DtFi,DtFj〉dt.

We conclude that

∂iφ(F ) =

n∑
j=1

(Γ−1)i,j

∫ 1

0

〈Dtφ(F ),DtFj〉dt.

As a consequence, we obtain

E (∂iφ(F )) = E

 n∑
j=1

(Γ−1)i,j

∫ 1

0

〈Dtφ(F ),DtFj〉dt


=

n∑
j=1

E
(∫ 1

0

〈Dtφ(F ), (Γ−1)i,jDtFj〉dt
)

=

n∑
j=1

E
(
φ(F )δ((Γ−1)i,jDFj)

)

= E

φ(F )δ

 n∑
j=1

(Γ−1)i,jDFj


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Remark that the integration by parts is licit because (Γ−1)i,jDFj belongs
to the domain of δ. Indeed, from our assumptions, DFj is in D2,2 and thus in
the domain of δ from Exercise 6.44. Also (Γ−1)i,j ∈ D1,2 and (Γ−1)i,jDFj ∈
L2(F1,P) which easily implies that (Γ−1)i,jDFj belongs to the domain of δ.

By using inductively this integration by parts formula, it is seen that for
every α ∈ {1, ..., n}k, k ≥ 1, there exists an integrable random variable Zα such
that,

E (∂αφ(F )) = E (φ(F )Zα) .

This finishes the proof. 2

7 Existence of a smooth density

As usual, we consider a filtered probability space (Ω, (Ft)t≥0,F ,P) which sat-
isfies the usual conditions and on which is defined a n-dimensional Brownian
motion (Bt)t≥0. Our first purpose here, is to prove that solutions of stochastic
differential equations are differentiable in the sense of Malliavin. The following
lemma is easy to prove by using the Wiener chaos expansion.

Lemma 6.48. Let (us)0≤s≤1 be a progressively measurable process such that
for every 0 ≤ s ≤ 1, uis ∈ D1,2 and

E
(∫ 1

0

‖us‖2ds
)
< +∞, E

(∫ 1

0

∫ 1

0

‖Dsut‖2dsdt
)
< +∞.

Then
∫ 1

0
usdBs ∈ D1,2 and

Dt

(∫ 1

0

usdBs

)
= ut +

n∑
i=1

∫ 1

t

(Dtu
i
s)dB

i
s.

Proof. We make the proof when n = 1 and use the notations introduced in the
Wiener chaos expansion section. For f ∈ L2([0, 1]), we have

DtIn(f⊗n) = f(t)In−1(f⊗(n−1)).

But we can write,

In(f⊗n) =

∫ 1

0

f(t)

(∫
∆n−1[0,t]

f⊗(n−1)dBt1 · · · dBtn−1

)
dBt,

and thus

In(f⊗n) =

∫ 1

0

usdBs,



7 Existence of a smooth density 221

with ut = f(t)
∫

∆n−1[0,t]
f⊗(n−1)dBt1 · · · dBtn−1 . Since

f(t)In−1(f⊗(n−1)) =f(t)

(∫
∆n−1[0,t]

f⊗(n−1)dBt1 · · · dBtn−1

)

+ f(t)

∫ 1

t

f(s)

(∫
∆n−2[0,s]

f⊗(n−1)dBt1 · · · dBtn−2

)
dBs,

we get the result when
∫ 1

0
usdBs can be written as In(f⊗n). By continuity of

the Malliavin derivative on the space of chaos of order n, we conclude that the

formula is true if
∫ 1

0
usdBs is a chaos of order n. The result finally holds in all

generality by using the Wiener chaos expansion. 2

We consider two functions b : Rn → Rn and σ : Rn → Rn×n and we assume
that b and σ are C∞ with derivatives at any order (more than 1) bounded.

As we know, there exists a bicontinuous process (Xx
t )t≥0,x∈Rd such that for

t ≥ 0,

Xx
t = x+

∫ t

0

b(Xx
s )ds+

n∑
k=1

∫ t

0

σk(Xx
s )dBks . (6.7)

Moreover, for every p ≥ 1, and T ≥ 0

E
(

sup
0≤t≤T

‖Xx
t ‖p
)
< +∞.

Theorem 6.49. For every i = 1, ..., n, 0 ≤ t ≤ 1, Xx,i
t ∈ D∞ and for r ≤ t,

Dj
rX

x,i
t = σi,j(X

x
r ) +

n∑
l=1

∫ t

r

∂lbi(X
x
s )Dj

rX
x,l
s ds+

n∑
k,l=1

∫ t

r

∂lσi,k(Xx
s )Dj

rX
x,l
s dBks ,

(6.8)

where Dj
rX

i
t is the j-th component of DrX

i
t . If r > t, then Dj

rX
x,i
t = 0.

Proof. We first prove that Xx,i
1 ∈ D1,p for every p ≥ 1. We consider the Picard

approximations given by X0(t) = x and

Xn+1(t) = x+

∫ t

0

b(Xn(s))ds+

n∑
k=1

∫ t

0

σk(Xn(s))dBks .

By induction, it is easy to see that Xn(t) ∈ D1,p and that for every p ≥ 1, we
have

Ψn(t) = sup
0≤r≤t

E

(
sup
s∈[r,t]

‖DrXn(s)‖p
)
< +∞,
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and

Ψn+1(t) ≤ α+ β

∫ t

0

Ψn(s)ds.

Then, we observe that Xn(t) converges to Xx
t in Lp and that the sequence

‖Xn(t)‖1,p is bounded. As a consequence Xx,i
1 ∈ D1,p for every p ≥ 1. The

equation for the Malliavin derivative is obtained by differentiating the equation
satisfied by Xx

t . Higher order derivatives may be treated in a similar way with
a few additional work, the details are let to the reader. 2

Combining this theorem with Theorem 6.13 and using the uniqueness prop-
erty for solutions of linear stochastic differential equations, we obtain the fol-
lowing representation for the Malliavin derivative of a solution of a stochastic
differential equation:

Corollary 6.50. We have

Dj
rX

x
t = J0→t(x)J−1

0→r(x)σj(X
x
r ), j = 1, ..., n, 0 ≤ r ≤ t,

where (J0→t(x))t≥0 is the first variation process defined by

J0→t(x) =
∂Xx

t

∂x
(x).

We now fix x ∈ Rn as the initial condition for our equation and denote by

Γt =

 n∑
j=1

∫ 1

0

Dj
rX

i,x
t Dj

rX
i′,x
t dr


1≤i,i′≤n

the Malliavin matrix of Xx
t . From the previous corollary, we deduce that

Γt(x) = J0→t(x)

∫ t

0

J−1
0→r(x)σ(Xx

r )σ(Xx
r )∗J−1

0→r(x)∗drJ0→t(x)∗. (6.9)

We are now finally in position to state the main theorem of the section:

Theorem 6.51. Assume that there exists λ > 0 such that for every x ∈ Rn,

‖σ(x)‖2 ≥ λ‖x‖2,

then for every t > 0 and x ∈ Rn, the random variable Xx
t has a smooth density

with respect to the Lebesgue measure.

Proof. We use Theorem 6.45. We therefore want to prove that Γt(x) is invert-
ible with inverse in Lp for p ≥ 1. Since J0→t(x) is invertible and its inverse
solves a linear equation (see Exercise 6.14), we deduce that for every p ≥ 1,

E
(
‖J−1

0→t(x)‖p
)
< +∞.
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From formula (6.9), we conclude that it is enough to prove that Ct(x) is in-
vertible with inverse in Lp where

Ct(x) =

∫ t

0

J−1
0→r(x)σ(Xx

r )σ(Xx
r )∗J−1

0→r(x)∗dr.

By the uniform ellipticity assumption, we have

Ct(x) ≥ λ
∫ t

0

J−1
0→r(x)J−1

0→r(x)∗dr,

where the inequality is understood in the sense that the difference of the two
symmetric matrices is non negative. This implies that Ct(x) is invertible. More-
over, it is an easy exercise to prove that if Mt is a continuous map taking its
values in the set of positive definite matrices, then we have(∫ t

0

Msds

)−1

≤ 1

t2

(∫ t

0

M−1
s ds

)
.

As a consequence, we obtain

C−1
t (x) ≤ 1

t2λ

∫ t

0

J0→r(x)∗J0→r(x)dr.

Since J0→r(x) has moments in Lp for all p ≥ 1, we conclude that Ct(x) is
invertible with inverse in Lp. 2

Notes and Comments

Sections 1,2,3,4. Stochastic differential equations were first considered by
Itô [?], with the purpose of providing a pathwise construction of a diffusion
process associated to a given diffusion operator. We have to mention that
another pathwise construction of diffusion processes was made by Döblin in
1940, and thus before Itô, in a paper that was rediscovered in 2000 (see [?]).
Essentially, to construct the diffusion with generator

L =
1

2
σ(x)2 d

dx
+ b(x)

d

dx
,

Döblin considers the equation

Xt = x+ β∫ t
0
σ(Xs)2ds

+

∫ t

0

b(Xs)ds.

Observe that this equation bypasses the theory of stochastic integrals that was
not available at that time but is of course equivalent to Itô’s equation when
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keeping in mind the Dambins, Dubins-Schwarz theorem. Concerning the path-
wise construction of diffusion processes, we also have to mention the martingale
problem approach by Stroock and Varadhan [?]. Stochastic differential equa-
tions with respect to general semimartingales may also be considered and we
refer to the book by Protter [?] for an account of the theory. The theory of
regularity of stochastic flows is difficult and the classical reference for these
problems is the book by Kunita [?]. The rough paths theory presented in
Chapter 7 simplifies several proofs of the regularity of flows (see the book by
Friz and Victoir [?]).

Sections 5,6. Malliavin calculus was first introduced by Malliavin in [?]
and later developed by Shigekawa [?]. The motivation was to give a probabilis-
tic proof of Hörmander’s theorem. The nowadays classical reference to study
Malliavin calculus is the book by Nualart [?]. For an alternative and more
geometric approach, we refer to the book by Bell [?], to the book by Malliavin
himself [?] or the book by Shigekawa [?] For a more specialized reading, we re-
fer the interested reader to the lecture notes [?] and the very influential papers
by Kusuoka and Stroock [?], [?] and [?] for further details and applications of
Malliavin calculus to stochastic differential equations and partial differential
equations.



Chapter 7

An introduction to Lyons rough paths theory

This chapter is an introduction to theory of rough paths that was conceived
by T. Lyons in the 1990’s. The theory is purely deterministic and offers a
convenient alternative to Itô’s calculus to define and study differential equations
driven by Brownian motions. We focus on the main ideas and prove the Lyon’s
continuity result in the linear case and then proves that rough paths theory
can be applied to study stochastic differential equations.

1 Continuous paths with finite p-variation

If s ≤ t, as before, we will denote by ∆[s, t], the set of subdivisions of the
interval [s, t], that is Π ∈ ∆[s, t] can be written

Π = {s = t0 < t1 < · · · < tn = t} .

The following definition is basic.

Definition 7.1. A continuous path x : [s, t] → Rd is said to have a bounded
variation on [s, t], if the 1-variation of x on [s, t], which is defined as

‖x‖1−var;[s,t] := sup
Π∈∆[s,t]

n−1∑
k=0

‖x(tk+1)− x(tk)‖,

is finite. The space of continuous bounded variation paths x : [s, t]→ Rd, will
be denoted by C1−var([s, t],Rd).

Of course ‖·‖1−var;[s,t] is not a norm, because constant functions have a zero
1-variation, but it is oviously a semi-norm. If x is continuously differentiable
on [s, t], it is easily seen that

‖x‖1−var,[s,t] =

∫ t

s

‖x′(s)‖ds.

Proposition 7.2. Let x ∈ C1−var([0, T ],Rd). The function (s, t)→ ‖x‖1−var,[s,t]
is additive, i.e for 0 ≤ s ≤ t ≤ u ≤ T ,

‖x‖1−var,[s,t] + ‖x‖1−var,[t,u] = ‖x‖1−var,[s,u],

and controls x in the sense that for 0 ≤ s ≤ t ≤ T ,

‖x(s)− x(t)‖ ≤ ‖x‖1−var,[s,t].

The function s→ ‖x‖1−var,[0,s] is moreover continuous and non decreasing.
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Proof. If Π1 ∈ ∆[s, t] and Π2 ∈ ∆[t, u], then Π1 ∪ Π2 ∈ ∆[s, u]. As a conse-
quence, we obtain

sup
Π1∈∆[s,t]

n−1∑
k=0

‖x(tk+1)− x(tk)‖+ sup
Π2∈∆[t,u]

n−1∑
k=0

‖x(tk+1)− x(tk)‖

≤ sup
Π∈∆[s,u]

n−1∑
k=0

‖x(tk+1)− x(tk)‖,

thus
‖x‖1−var,[s,t] + ‖x‖1−var,[t,u] ≤ ‖x‖1−var,[s,u].

Let now Π ∈ ∆[s, u]:

Π = {s = t0 < t1 < · · · < tn = t} .

Let k = max{j, tj ≤ t}. By the triangle inequality, we have

n−1∑
j=0

‖x(tj+1)− x(tj)‖ ≤
k−1∑
j=0

‖x(tj+1)− x(tj)‖+

n−1∑
j=k

‖x(tj+1)− x(tj)‖

≤ ‖x‖1−var,[s,t] + ‖x‖1−var,[t,u].

Taking the sup of Π ∈ ∆[s, u] gives

‖x‖1−var,[s,t] + ‖x‖1−var,[t,u] ≥ ‖x‖1−var,[s,u],

which completes the proof. The proof of the continuity and monotinicity of
s→ ‖x‖1−var,[0,s] is let to the reader. 2

This control of the path by the 1-variation norm is an illustration of the
notion of controlled path which is central in rough paths theory.

Definition 7.3. A map ω : {0 ≤ s ≤ t ≤ T} → [0,∞) is called superadditive
if for all s ≤ t ≤ u,

ω(s, t) + ω(t, u) ≤ ω(s, u).

If, in adition, ω is continuous and ω(t, t) = 0, we call ω a control. We say that
a path x : [0, T ] → R is controlled by a control ω, if there exists a constant
C > 0, such that for every 0 ≤ s ≤ t ≤ T ,

‖x(t)− x(s)‖ ≤ Cω(s, t).

Obviously, Lipschitz functions have a bounded variation. The converse
is not true: t →

√
t has a bounded variation on [0, 1] but is not Lipschitz.

However, any continuous path with bounded variation is the reparametrization
of a Lipschitz path in the following sense.
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Proposition 7.4. Let x ∈ C1−var([0, T ],Rd). There exist a Lipschitz function
y : [0, 1]→ Rd, and a continuous and non-decreasing function φ : [0, T ]→ [0, 1]
such that x = y ◦ φ.

Proof. We assume ‖x‖1−var,[0,T ] 6= 0 and consider

φ(t) =
‖x‖1−var,[0,t]
‖x‖1−var,[0,T ]

.

It is continuous and non decreasing. There exists a function y such that x = y◦φ
because φ(t1) = φ(t2) implies x(t1) = x(t2). We have then, for s ≤ t,

‖y(φ(t))−y(φ(s))‖ = ‖x(t)−x(s)‖ ≤ ‖x‖1−var,[s,t] = ‖x‖1−var,[0,T ](φ(t)−φ(s)).

2

The next result shows that the set of continuous paths with bounded vari-
ation is a Banach space.

Theorem 7.5. The space C1−var([0, T ],Rd) endowed with the norm ‖x(0)‖+
‖x‖1−var,[0,T ] is a Banach space.

Proof. Let xn ∈ C1−var([0, T ],Rd) be a Cauchy sequence. It is clear that

‖xn − xm‖∞ ≤ ‖xn(0)− xm(0)‖+ ‖xn − xm‖1−var,[0,T ].

Thus, xn converges uniformly to a continuous path x : [0, T ]→ R. We need to
prove that x has a bounded variation. Let

Π = {0 = t0 < t1 < · · · < tn = T}

be a a subdivision of [0, T ]. There is m ≥ 0, such that ‖x− xm‖∞ ≤ 1
2n , thus

n−1∑
k=0

‖x(tk+1)− x(tk)‖

≤
n−1∑
k=0

‖x(tk+1)− xm(tk+1)‖+

n−1∑
k=0

‖xm(tk)− x(tk)‖+ ‖xm‖1−var,[0,T ]

≤1 + sup
n
‖xn‖1−var,[0,T ].

Thus, we have

‖x‖1−var,[0,T ] ≤ 1 + sup
n
‖xn‖1−var,[0,T ] <∞.

2
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More generally, we shall be interested in paths that have a finite p-variation,
p > 0.

Definition 7.6. Let s ≤ t. A path x : [s, t] → Rd is said to be of finite
p-variation, p > 0, if the p-variation of x on [s, t], which is defined as

‖x‖p−var;[s,t] :=

(
sup

Π∈∆[s,t]

n−1∑
k=0

‖x(tk+1)− x(tk)‖p
)1/p

,

is finite. The space of continuous paths x : [s, t]→ Rd with a finite p-variation
will be denoted by Cp−var([s, t],Rd).

Exercise 7.7. Show that if x : [s, t] → Rd is an α-Hölder path, then it has
finite 1/α-variation.

The notion of p-variation is only interesting when p ≥ 1.

Proposition 7.8. Let x : [s, t]→ Rd be a continuous path of finite p-variation
with p < 1. Then, x is constant.

Proof. We have for s ≤ u ≤ t,

‖x(u)− x(s)‖ ≤ (max ‖x(tk+1)− x(tk)‖1−p)

(
n−1∑
k=0

‖x(tk+1)− x(tk)‖p
)

≤ (max ‖x(tk+1)− x(tk)‖1−p)‖x‖pp−var;[s,t].

Since x is continuous, it is also uniformly continuous on [s, t]. By taking a
sequence of subdivisions whose mesh tends to 0, we deduce then that

‖x(u)− x(s)‖ = 0,

so that x is constant. 2

The following proposition is immediate and its proof is let to the reader:

Proposition 7.9. Let x : [s, t]→ Rd be a continuous path. If p ≤ p′ then

‖x‖p′−var;[s,t] ≤ ‖x‖p−var;[s,t].

As a consequence the following inclusion holds

Cp−var([s, t],Rd) ⊂ Cp
′−var([s, t],Rd)

The following proposition generalizes Proposition 7.2 to paths with finite
p-variation.
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Proposition 7.10. Let x ∈ Cp−var([0, T ],Rd). Then ω(s, t) = ‖x‖pp−var;[s,t] is

a control such that for every s ≤ t,
‖x(s)− x(t)‖ ≤ ω(s, t)1/p.

Proof. It is immediate that

‖x(s)− x(t)‖ ≤ ω(s, t)1/p,

so we focus on the proof that ω is a control. If Π1 ∈ ∆[s, t] and Π2 ∈ ∆[t, u],
then Π1 ∪Π2 ∈ ∆[s, u]. As a consequence, we obtain

sup
Π1∈∆[s,t]

n−1∑
k=0

‖x(tk+1)− x(tk)‖p + sup
Π2∈∆[t,u]

n−1∑
k=0

‖x(tk+1)− x(tk)‖p

≤ sup
Π∈∆[s,u]

n−1∑
k=0

‖x(tk+1)− x(tk)‖p,

thus
‖x‖pp−var,[s,t] + ‖x‖pp−var,[t,u] ≤ ‖x‖

p
p−var,[s,u].

The proof of the continuity is left to the reader. 2

In the following sense, ‖x‖pp−var;[s,t] is the minimal control of a path x ∈
Cp−var([0, T ],Rd).
Proposition 7.11. Let x ∈ Cp−var([0, T ],Rd) and let ω : {0 ≤ s ≤ t ≤ T} →
[0,∞) be a control such that for 0 ≤ s ≤ t ≤ T ,

‖x(s)− x(t)‖ ≤ Cω(s, t)1/p,

then
‖x‖p−var;[s,t] ≤ Cω(s, t)1/p.

Proof. We have

‖x‖p−var;[s,t] =

(
sup

Π∈∆[s,t]

n−1∑
k=0

‖x(tk+1)− x(tk)‖p
)1/p

≤

(
sup

Π∈∆[s,t]

n−1∑
k=0

Cpω(tk, tk+1)

)1/p

≤ Cω(s, t).

2

The next result shows that the set of continuous paths with bounded p-
variation is a Banach space.

Theorem 7.12. Let p ≥ 1. The space Cp−var([0, T ],Rd) endowed with the
norm ‖x(0)‖+ ‖x‖p−var,[0,T ] is a Banach space.

Proof. The proof is identical to the case p = 1. 2
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2 The signature of a bounded variation path

In this section we introduce the notion of the signature of a path x ∈ C1−var([0, T ],Rd)
which is a convenient way to encode all the algebraic information on the path
x which is relevant to study differential equations driven by x. The motivation
for the definition of the signature comes from formal manipulations on Taylor
series.

Let us consider the ordinary differential equation

y(t) = y(0) +

d∑
i=1

∫ t

0

Vi(y(u))dxi(u),

where the Vi’s are smooth vector fields on Rn (see Section 5 in Chapter 6 for
the definition of a vector field). If f : Rn → R is a C∞ function, by the change
of variable formula,

f(y(t)) = f(y(s)) +

d∑
i=1

∫ t

s

Vif(y(u))dxi(u).

Now, a new application of the change of variable formula to Vif(y(s)) leads
to

f(y(t)) = f(y(s))+

d∑
i=1

Vif(y(s))

∫ t

s

dxi(u)+

d∑
i,j=1

∫ t

s

∫ u

0

VjVif(y(v))dxj(v)dxi(u).

We can continue this procedure to get after N steps

f(y(t)) = f(y(s)) +

N∑
k=1

∑
I=(i1,··· ,ik)

(Vi1 · · ·Vikf)(y(s))

∫
∆k[s,t]

dxI +RN (s, t)

for some remainder term RN (s, t), where we used the notations:

1. ∆k[s, t] = {(t1, · · · , tk) ∈ [s, t]k, s ≤ t1 ≤ t2 · · · ≤ tk ≤ t}

2. If I = (i1, · · · , ik) ∈ {1, · · · , d}k is a word with length k,∫
∆k[s,t]

dxI =

∫
s≤t1≤t2≤···≤tk≤t

dxi1(t1) · · · dxik(tk).

If we let N → +∞, assuming RN (s, t) → 0 (which is by the way true for
t− s small enough if the Vi’s are analytic), we are led to the formal expansion
formula:

f(y(t)) = f(y(s)) +

+∞∑
k=1

∑
I=(i1,··· ,ik)

(Vi1 · · ·Vikf)(y(s))

∫
∆k[s,t]

dxI .
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This shows, at least at the formal level, that all the information given by x
about y is contained in the set of iterated integrals

∫
∆k[s,t]

dxI .

Let R[[X1, ..., Xd]] be the non commutative algebra over R of the formal
series with d indeterminates, that is the set of series

Y = y0 +

+∞∑
k=1

∑
I∈{1,...,d}k

ai1,...,ikXi1 ...Xik .

Definition 7.13. Let x ∈ C1−var([0, T ],Rd). The signature of x (or Chen’s
series) is the formal series:

S(x)s,t = 1 +

+∞∑
k=1

∑
I∈{1,...,d}k

(∫
∆k[s,t]

dxI

)
Xi1 · · ·Xik , 0 ≤ s ≤ t ≤ T.

As we are going to see, the signature is a fascinating algebraic object. At
the source of the numerous properties of the signature lie the following so-called
Chen’s relations

Lemma 7.14 (Chen’s relations). Let x ∈ C1−var([0, T ],Rd). For any word
(i1, ..., in) ∈ {1, ..., d}n and any 0 ≤ s ≤ t ≤ u ≤ T ,∫

∆n[s,u]

dx(i1,...,in) =

n∑
k=0

∫
∆k[s,t]

dx(i1,...,ik)

∫
∆n−k[t,u]

dx(ik+1,...,in),

where we used the convention that if I is a word with length 0, then
∫

∆0[0,t]
dxI =

1.

Proof. It follows readily by induction on n by noticing that∫
∆n[s,u]

dx(i1,...,in) =

∫ u

s

(∫
∆n−1[s,tn]

dx(i1,...,in−1)

)
dxin(tn).

2

To avoid heavy and cumbersome notations, it will be convenient to denote∫
∆k[s,t]

dx⊗k =
∑

I∈{1,...,d}k

(∫
∆k[s,t]

dxI

)
Xi1 · · ·Xik .

This notation actually reflects a natural algebra isomorphism between R[[X1, ..., Xd]]
and 1⊕+∞

k=1 (Rd)⊗k. With this notation, observe that the signature writes then

S(x)s,t = 1 +

+∞∑
k=1

∫
∆k[s,t]

dx⊗k,
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and that the Chen’s relations become∫
∆n[s,u]

dx⊗n =

n∑
k=0

∫
∆k[s,t]

dx⊗k
∫

∆n−k[t,u]

dx⊗(n−k).

The Chen’s relations imply the following flow property for the signature:

Lemma 7.15. Let x ∈ C1−var([0, T ],Rd). For any 0 ≤ s ≤ t ≤ u ≤ T ,

S(x)s,u = S(x)s,tS(x)t,u

Proof. Indeed, form the Chen’s relations, we have

S(x)s,u = 1 +

+∞∑
k=1

∫
∆k[s,u]

dx⊗k

= 1 +

+∞∑
k=1

n∑
j=0

∫
∆j [s,t]

dx⊗j
∫

∆k−j [t,u]

dx⊗(k−j)

= S(x)s,tS(x)t,u.

2

3 Estimating iterated integrals

In the previous section we introduced the signature of a bounded variation path
x as the formal series

S(x)s,t = 1 +

+∞∑
k=1

∫
∆k[s,t]

dx⊗k.

If now x ∈ Cp−var([0, T ],Rd), p ≥ 1 the iterated integrals
∫

∆k[s,t]
dx⊗k can only

be defined as Riemann-Stieltjes integrals when p = 1 or Young integrals when
p < 2. As we are going to see, it is actually possible to define the signature of
paths with a finite p variation even when p ≥ 2. For P ∈ R[[X1, ..., Xd]] which
can be writen as

P = P0 +

+∞∑
k=1

∑
I∈{1,...,d}k

ai1,...,ikXi1 ...Xik ,

we define

‖P‖ = |P0|+
+∞∑
k=1

∑
I∈{1,...,d}k

|ai1,...,ik | ∈ [0,∞].

It is quite easy to check that for P,Q ∈ R[[X1, ..., Xd]]

‖PQ‖ ≤ ‖P‖‖Q‖.
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Let x ∈ C1−var([0, T ],Rd). For p ≥ 1, we denote∥∥∥∥∫ dx⊗k
∥∥∥∥
p−var,[s,t]

=

(
sup

Π∈D[s,t]

n−1∑
i=0

∥∥∥∥∥
∫

∆k[ti,ti+1]

dx⊗k

∥∥∥∥∥
p)1/p

,

where D[s, t] is the set of subdivisions of the interval [s, t]. Observe that for
k ≥ 2, in general∫

∆k[s,t]

dx⊗k +

∫
∆k[t,u]

dx⊗k 6=
∫

∆k[s,u]

dx⊗k.

Actually from the Chen’s relations we have∫
∆n[s,u]

dx⊗n =

∫
∆n[s,t]

dx⊗n+

∫
∆n[t,u]

dx⊗n+

n−1∑
k=1

∫
∆k[s,t]

dx⊗k
∫

∆n−k[t,u]

dx⊗(n−k).

It follows that
∥∥∫ dx⊗k∥∥

p−var,[s,t] needs not to be the p-variation of the path

t→
∫

∆k[s,t]
dx⊗k. It is however easy to verify that∥∥∥∥∥

∫
∆k[s,·]

dx⊗k

∥∥∥∥∥
p−var,[s,t]

≤
∥∥∥∥∫ dx⊗k

∥∥∥∥
p−var,[s,t]

.

The first major result of rough paths theory is the following estimate:

Theorem 7.16. Let p ≥ 1. There exists a constant C ≥ 0, depending only on
p, such that for every x ∈ C1−var([0, T ],Rd) and k ≥ 0,∥∥∥∥∥

∫
∆k[s,t]

dx⊗k

∥∥∥∥∥ ≤ Ck(
k
p

)
!

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j−var,[s,t]

k

, 0 ≤ s ≤ t ≤ T.

By
(
k
p

)
!, we of course mean Γ

(
k
p + 1

)
, where Γ is the Euler function. Some

remarks are in order before we prove the result. If p = 1, then the estimate
becomes ∥∥∥∥∥

∫
∆k[s,t]

dx⊗k

∥∥∥∥∥ ≤ Ck

k!
‖x‖k1−var,[s,t],

which is immediately checked because∥∥∥∥∥
∫

∆k[s,t]

dx⊗k

∥∥∥∥∥ ≤ ∑
I∈{1,...,d}k

∥∥∥∥∥
∫

∆k[s,t]

dxI

∥∥∥∥∥
≤

∑
I∈{1,...,d}k

∫
s≤t1≤t2≤···≤tk≤t

d‖xi1‖1−var,[s,t1] · · · d‖xik‖1−var,[s,tk]

≤ 1

k!
‖x‖k1−var,[s,t].
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We can also observe that for k ≤ p, the estimate is easy to obtain because∥∥∥∥∥
∫

∆k[s,t]

dx⊗k

∥∥∥∥∥ ≤
∥∥∥∥∫ dx⊗k

∥∥∥∥
p
k−var,[s,t]

.

So, all the work is to prove the estimate when k > p. The proof is split into
two lemmas. The first one is the following binomial inequality which is proved
as an exercise.

Lemma 7.17 (Binomial inequality). For x, y > 0, n ∈ N, n ≥ 0, and p ≥ 1,

n∑
j=0

xj/p(
j
p

)
!

y(n−j)/p(
n−j
p

)
!
≤ p (x+ y)n/p(

n
p

)
!

.

Proof. See Exercise 7.18. 2

Exercise 7.18. Let D be the open unit disc in C, D = {z ∈ C, |z| < 1}. If f
is a continuous on D̄ and holomorphic on D then we denote for ξ ∈ R,

f̂(ξ) =

∫ 1
2

− 1
2

f(e2iπx)e−2iπxξdx.

1. By writing f̂(ξ) as an integral over the unit circle and using the residue
theorem, show that for 0 < α < 2 and 0 < λ < 1 the following identities
hold

α

∞∑
j=0

f̂(αj)λαj = f(λ)− αλα sin(απ)

π

∫ 1

0

tα−1f(−t)
|tα − λαe−iαπ|2

dt

α

−1∑
j=−∞

f̂(αj)λαj =
αλα sin(απ)

π

∫ 1

0

tα−1f(−t)
|e−iαπ − λαtα|2

dt.

2. Compute f̂ when f(z) = (1 + z)T , T > 0.

3. Show that for α ∈ (0, 2) , n ∈ N and 0 < λ ≤ 1 we have

α

n∑
j=0

(
αn

αj

)
λαj

=(1 + λ)αn − αλα sin(απ)

π

∫ 1

0

tα−1(1− t)αn
(

1

|tα − λαe−iαπ|2
+

1

|e−iαπ − λαtα|2

)
dt,

where
(
αn
αj

)
= (αn)!

(αj)!((n−j)α)! .

4. Give the proof of Lemma 7.17.
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The second lemma we need is the following resut.

Lemma 7.19. Let Γ : {0 ≤ s ≤ t ≤ T} → RN . Let us assume that:

1. There exists a control ω̃ such that

lim
r→0

sup
(s,t),ω̃(s,t)≤r

‖Γs,t‖
r

= 0;

2. There exists a control ω and θ > 1, ξ > 0 such that for 0 ≤ s ≤ t ≤ u ≤ T ,

‖Γs,u‖ ≤ ‖Γs,t‖+ ‖Γt,u‖+ ξω(s, u)θ.

Then, for all 0 ≤ s < t ≤ T ,

‖Γs,t‖ ≤
ξ

1− 21−θ ω(s, t)θ.

Proof. For ε > 0, let us consider the control

ωε(s, t) = ω(s, t) + εω̃(s, t).

Define now
Ψ(r) = sup

s,u,ωε(s,u)≤r
‖Γs,u‖.

If s, u is such that ωε(s, u) ≤ r, we can find a t such that ωε(s, t) ≤ 1
2ωε(s, u),

ωε(t, u) ≤ 1
2ωε(s, u). Indeed, the continuity of ωε forces the existence of a t

such that ωε(s, t) = ωε(t, u). We obtain therefore

‖Γs,u‖ ≤ 2Ψ(r/2) + ξrθ,

which implies by maximization,

Ψ(r) ≤ 2Ψ(r/2) + ξrθ.

By iterating n times this inequality, we obtain

Ψ(r) ≤ 2nΨ
( r

2n

)
+ ξ

n−1∑
k=0

2k(1−θ)rθ

≤ 2nΨ
( r

2n

)
+ ξ

1

1− 21−θ r
θ.

It is moreover clear that
lim
n→∞

2nΨ
( r

2n

)
= 0.

We conclude

Ψ(r) ≤ ξ

1− 21−θ r
θ

and thus

‖Γs,u‖ ≤
ξ

1− 21−θ ωε(s, u)θ.

Sending ε→ 0, finishes the proof. 2
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We can now turn to the proof of Theorem 7.16.

Proof. Let us denote

ω(s, t) =

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j−var,[s,t]

p

.

We claim that ω is a control. Indeed for 0 ≤ s ≤ t ≤ u ≤ T , we have from the
reverse Minkowski inequality ‖x+ y‖1/p ≥ ‖x‖1/p + ‖y‖1/p,

ω(s, t) + ω(t, u) =

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j−var,[s,t]

p

+

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j−var,[t,u]

p

≤

 [p]∑
j=1

(∥∥∥∥∫ dx⊗j
∥∥∥∥p/j
p
j−var,[s,t]

+

∥∥∥∥∫ dx⊗j
∥∥∥∥p/j
p
j−var,[t,u]

)1/p
p

≤

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j−var,[s,u]

p

= ω(s, u).

It is clear that for some constant β > 0 which is small enough, we have for
k ≤ p, ∥∥∥∥∥

∫
∆k[s,t]

dx⊗k

∥∥∥∥∥ ≤ 1

β
(
k
p

)
!
ω(s, t)k/p.

Let us now consider

Γs,t =

∫
∆[p]+1[s,t]

dx⊗([p]+1).

From the Chen’s relations, we have for 0 ≤ s ≤ t ≤ u ≤ T ,

Γs,u = Γs,t + Γt,u +

[p]∑
j=1

∫
∆j [s,t]

dx⊗j
∫

∆[p]+1−j [t,u]

dx⊗([p]+1−j).
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Therefore, we obtain

‖Γs,u‖ ≤ ‖Γs,t‖+ ‖Γt,u‖+

[p]∑
j=1

∥∥∥∥∥
∫

∆j [s,t]

dx⊗j

∥∥∥∥∥
∥∥∥∥∥
∫

∆[p]+1−j [t,u]

dx⊗([p]+1−j)

∥∥∥∥∥
≤ ‖Γs,t‖+ ‖Γt,u‖+

1

β2

[p]∑
j=1

1(
j
p

)
!
ω(s, t)j/p

1(
[p]+1−j

p

)
!
ω(t, u)([p]+1−j)/p

≤ ‖Γs,t‖+ ‖Γt,u‖+
1

β2

[p]+1∑
j=0

1(
j
p

)
!
ω(s, t)j/p

1(
[p]+1−j

p

)
!
ω(t, u)([p]+1−j)/p

≤ ‖Γs,t‖+ ‖Γt,u‖+
1

β2
p

(ω(s, t) + ω(t, u))([p]+1)/p(
[p]+1
p

)
!

≤ ‖Γs,t‖+ ‖Γt,u‖+
1

β2
p
ω(s, u)([p]+1)/p(

[p]+1
p

)
!

.

On the other hand, for some constant A, we have

‖Γs,t‖ ≤ A‖x‖[p]+1
1−var,[s,t].

We deduce from the previous Lemma 7.19 that

‖Γs,t‖ ≤
1

β2

p

1− 21−θ
ω(s, t)([p]+1)/p(

[p]+1
p

)
!

,

with θ = [p]+1
p . The general case k ≥ p is dealt by induction. The details are

let to the reader. 2

Let x ∈ C1−var([0, T ],Rd). Since

ω(s, t) =

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j−var,[s,t]

p

is a control, the estimate∥∥∥∥∥
∫

∆k[s,t]

dx⊗k

∥∥∥∥∥ ≤ Ck(
k
p

)
!

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j−var,[s,t]

k

, 0 ≤ s ≤ t ≤ T,

easily implies that for k > p,∥∥∥∥∫ dx⊗k
∥∥∥∥

1−var,[s,t]
≤ Ck(

k
p

)
!
ω(s, t)k/p.
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We stress that it does not imply a bound on the 1-variation of the path t →∫
∆k[0,t]

dx⊗k. What we can get for this path, are bounds in p-variation:

Proposition 7.20. Let p ≥ 1. There exists a constant C ≥ 0, depending only
on p, such that for every x ∈ C1−var([0, T ],Rd) and k ≥ 0,∥∥∥∥∥

∫
∆k[0,·]

dx⊗k

∥∥∥∥∥
p−var,[s,t]

≤ Ck(
k
p

)
!
ω(s, t)1/pω(0, T )

k−1
p

where

ω(s, t) =

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j−var,[s,t]

p

, 0 ≤ s ≤ t ≤ T.

Proof. This is an easy consequence of the Chen’s relations and of the previous
Theorem. Indeed,∥∥∥∥∥

∫
∆k[0,t]

dx⊗k −
∫

∆k[0,s]

dx⊗k

∥∥∥∥∥
=

∥∥∥∥∥∥
k∑
j=1

∫
∆j [s,t]

dx⊗j
∫

∆k−j [0,s]

dx⊗(k−j)

∥∥∥∥∥∥
≤

k∑
j=1

∥∥∥∥∥
∫

∆j [s,t]

dx⊗j

∥∥∥∥∥
∥∥∥∥∥
∫

∆k−j [0,s]

dx⊗(k−j)

∥∥∥∥∥
≤Ck

k∑
j=1

1(
j
p

)
!
ω(s, t)j/p

1(
k−j
p

)
!
ω(s, t)(k−j)/p

≤Ckω(s, t)1/p
k∑
j=1

1(
j
p

)
!
ω(0, T )(j−1)/p 1(

k−j
p

)
!
ω(0, T )(k−j)/p

≤Ckω(s, t)1/pω(0, T )(k−1)/p
k∑
j=1

1(
j
p

)
!

1(
k−j
p

)
!
.

and we conclude with the binomial inequality. 2

We are now ready for a second major estimate which is the key to define
iterated integrals of a path with p-bounded variation when p ≥ 2.

Theorem 7.21. Let p ≥ 1, K > 0 and x, y ∈ C1−var([0, T ],Rd) such that

[p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗j

∥∥∥∥1/j

p
j−var,[0,T ]

≤ 1,
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and  [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j−var,[0,T ]

p

+

 [p]∑
j=1

∥∥∥∥∫ dy⊗j
∥∥∥∥1/j

p
j−var,[0,T ]

p

≤ K.

Then there exists a constant C ≥ 0 depending only on p and K such that for
0 ≤ s ≤ t ≤ T and k ≥ 1∥∥∥∥∥

∫
∆k[s,t]

dx⊗k −
∫

∆k[s,t]

dy⊗k

∥∥∥∥∥
≤

 [p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗j

∥∥∥∥1/j

p
j−var,[0,T ]

 Ck(
k
p

)
!
ω(s, t)k/p,

and ∥∥∥∥∥
∫

∆k[s,t]

dx⊗k

∥∥∥∥∥+

∥∥∥∥∥
∫

∆k[s,t]

dy⊗k

∥∥∥∥∥ ≤ Ck(
k
p

)
!
ω(s, t)k/p

where ω is the control

ω(s, t) =

(∑[p]
j=1

∥∥∫ dx⊗j∥∥1/j
p
j−var,[s,t]

)p
+
(∑[p]

j=1

∥∥∫ dy⊗j∥∥1/j
p
j−var,[s,t]

)p
(∑[p]

j=1

∥∥∫ dx⊗j∥∥1/j
p
j−var,[0,T ]

)p
+
(∑[p]

j=1

∥∥∫ dy⊗j∥∥1/j
p
j−var,[0,T ]

)p
+


∑[p]
j=1

∥∥∫ dx⊗j − ∫ dy⊗j∥∥1/j
p
j−var,[s,t]∑[p]

j=1

∥∥∫ dx⊗j − ∫ dy⊗j∥∥1/j
p
j−var,[0,T ]


p

.

Proof. We prove by induction on k that for some constants C, β,∥∥∥∥∥
∫

∆k[s,t]

dx⊗k −
∫

∆k[s,t]

dy⊗k

∥∥∥∥∥
≤

 [p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗j

∥∥∥∥1/j

p
j−var,[0,T ]

 Ck

β
(
k
p

)
!
ω(s, t)k/p,

and ∥∥∥∥∥
∫

∆k[s,t]

dx⊗k

∥∥∥∥∥+

∥∥∥∥∥
∫

∆k[s,t]

dy⊗k

∥∥∥∥∥ ≤ Ck

β
(
k
p

)
!
ω(s, t)k/p
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For k ≤ p, we trivially have

∥∥∥∥∥
∫

∆k[s,t]

dx⊗k −
∫

∆k[s,t]

dy⊗k

∥∥∥∥∥ ≤
 [p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗j

∥∥∥∥1/j

p
j−var,[0,T ]

k

ω(s, t)k/p

≤

 [p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗j

∥∥∥∥1/j

p
j−var,[0,T ]

ω(s, t)k/p,

and ∥∥∥∥∥
∫

∆k[s,t]

dx⊗k

∥∥∥∥∥+

∥∥∥∥∥
∫

∆k[s,t]

dy⊗k

∥∥∥∥∥ ≤ Kk/pω(s, t)k/p.

Not let us assume that the result is true for 0 ≤ j ≤ k with k > p. Let

Γs,t =

∫
∆k[s,t]

dx⊗(k+1) −
∫

∆k[s,t]

dy⊗(k+1).

From the Chen’s relations, we have for 0 ≤ s ≤ t ≤ u ≤ T ,

Γs,u =Γs,t + Γt,u +

k∑
j=1

∫
∆j [s,t]

dx⊗j
∫

∆k+1−j [t,u]

dx⊗(k+1−j)

−
k∑
j=1

∫
∆j [s,t]

dy⊗j
∫

∆k+1−j [t,u]

dy⊗(k+1−j).

Therefore, from the binomial inequality

‖Γs,u‖ ≤‖Γs,t‖+ ‖Γt,u‖+

k∑
j=1

∥∥∥∥∥
∫

∆j [s,t]

dx⊗j −
∫

∆j [s,t]

dy⊗j

∥∥∥∥∥
∥∥∥∥∥
∫

∆k+1−j [t,u]

dx⊗(k+1−j)

∥∥∥∥∥
+

k∑
j=1

∥∥∥∥∥
∫

∆j [s,t]

dy⊗j

∥∥∥∥∥
∥∥∥∥∥
∫

∆k+1−j [t,u]

dx⊗(k+1−j) −
∫

∆k+1−j [t,u]

dy⊗(k+1−j)

∥∥∥∥∥
≤ ‖Γs,t‖+ ‖Γt,u‖+

1

β2
ω̃(0, T )

k∑
j=1

Cj(
j
p

)
!
ω(s, t)j/p

Ck+1−j(
k+1−j
p

)
!
ω(t, u)(k+1−j)/p

+
1

β2
ω̃(0, T )

k∑
j=1

Cj(
j
p

)
!
ω(s, t)j/p

Ck+1−j(
k+1−j
p

)
!
ω(t, u)(k+1−j)/p

≤ ‖Γs,t‖+ ‖Γt,u‖+
2p

β2
ω̃(0, T )Ck+1ω(s, u)(k+1)/p(

k+1
p

)
!
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where

ω̃(0, T ) =

[p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗j

∥∥∥∥1/j

p
j−var,[0,T ]

.

We deduce

‖Γs,t‖ ≤
2p

β2(1− 21−θ)
ω̃(0, T )Ck+1ω(s, t)(k+1)/p(

k+1
p

)
!

with θ = k+1
p . A correct choice of β finishes the induction argument. 2

The following continuity of the iterated integrals with respect to a conve-
nient topology can then be proved. The proof uses very similar arguments as
in the previous proof, so we let it as an exercise to the reader.

Theorem 7.22. Let p ≥ 1, K > 0 and x, y ∈ C1−var([0, T ],Rd) such that

[p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗j

∥∥∥∥1/j

p
j−var,[0,T ]

≤ 1,

and  [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j−var,[0,T ]

p

+

 [p]∑
j=1

∥∥∥∥∫ dy⊗j
∥∥∥∥1/j

p
j−var,[0,T ]

p

≤ K.

Then there exists a constant C ≥ 0 depending only on p and K such that for
0 ≤ s ≤ t ≤ T and k ≥ 1∥∥∥∥∥

∫
∆k[0,·]

dx⊗k −
∫

∆k[0,·]
dy⊗k

∥∥∥∥∥
p−var,[0,T ]

≤ Ck(
k
p

)
!

 [p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗j

∥∥∥∥1/j

p
j−var,[0,T ]

 .

This continuity result naturally leads to the following definition.

Definition 7.23. Let p ≥ 1 and x ∈ Cp−var([0, T ],Rd). We say that x is a p-
rough path if there exists a sequence xn ∈ C1−var([0, T ],Rd) such that xn → x
in p-variation and such that for every ε > 0, there exists N ≥ 0 such that for
m,n ≥ N ,

[p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗jm

∥∥∥∥1/j

p
j−var,[0,T ]

≤ ε.

The space of p-rough paths will be denoted Ωp([0, T ],Rd).
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From the very definition, Ωp([0, T ],Rd) is the closure of C1−var([0, T ],Rd)
inside Cp−var([0, T ],Rd) for the distance

dΩp([0,T ],Rd)(x, y) =

[p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dy⊗j

∥∥∥∥1/j

p
j−var,[0,T ]

.

If x ∈ Ωp([0, T ],Rd) and xn ∈ C1−var([0, T ],Rd) is such that xn → x in
p-variation and such that for every ε > 0, there exists N ≥ 0 such that for
m,n ≥ N ,

[p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗jm

∥∥∥∥1/j

p
j−var,[0,T ]

≤ ε,

then we define
∫

∆k[s,t]
dx⊗k for k ≤ p as the limit of the iterated integrals∫

∆k[s,t]
dx⊗kn . However it is important to observe that

∫
∆k[s,t]

dx⊗k may then

depend on the choice of the approximating sequence xn. Once the integrals∫
∆k[s,t]

dx⊗k are defined for k ≤ p, we can then use the previous theorem to

construct all the iterated integrals
∫

∆k[s,t]
dx⊗k are defined for k > p. It is then

obvious that if x, y ∈ Ωp([0, T ],Rd), then

1 +

[p]∑
k=1

∫
∆k[s,t]

dx⊗k = 1 +

[p]∑
k=1

∫
∆k[s,t]

dy⊗k

implies that

1 +

+∞∑
k=1

∫
∆k[s,t]

dx⊗k = 1 +

+∞∑
k=1

∫
∆k[s,t]

dy⊗k.

In other words the signature of a p-rough path is completely characterized by
its truncated signature at order [p]:

S[p](x)s,t = 1 +

[p]∑
k=1

∫
∆k[s,t]

dx⊗k.

For this reason, it is natural to present a p-rough path by this truncated signa-
ture at order [p] in order to stress that the choice of the approximating sequence
to contruct the iterated integrals up to order [p] has been made. The following
results are straightforward to obtain by a limiting argument.

Lemma 7.24 (Chen’s relations). Let x ∈ Ωp([0, T ],Rd), p ≥ 1. For 0 ≤ s ≤
t ≤ u ≤ T , and n ≥ 1,∫

∆n[s,u]

dx⊗n =

n∑
k=0

∫
∆k[s,t]

dx⊗k
∫

∆n−k[t,u]

dx⊗(n−k).
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Theorem 7.25. Let p ≥ 1. There exists a constant C ≥ 0, depending only on
p, such that for every x ∈ Ωp([0, T ],Rd) and k ≥ 1,

∥∥∥∥∥
∫

∆k[s,t]

dx⊗k

∥∥∥∥∥ ≤ Ck(
k
p

)
!

 [p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j−var,[s,t]

k

, 0 ≤ s ≤ t ≤ T.

4 Rough differential equations

We now define solutions of differential equations driven by p-rough paths, p ≥ 1.
We study in details the case of linear equations for which we prove the Lyons
continuity result and, at the end of the section, give, without proof, the full
Lyons result.

Let x ∈ Ωp([0, T ],Rd) be a p-rough path with truncated signature

[p]∑
k=0

∫
∆k[s,t]

dx⊗k,

and let xn ∈ C1−var([0, T ],Rd) be an approximating sequence such that

[p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dx⊗jn

∥∥∥∥1/j

p
j−var,[0,T ]

→ 0.

Let us consider matrices M1, · · · ,Md ∈ Rn×n. We have the following theo-
rem:

Theorem 7.26 (Lyons’ continuity theorem, linear case). Let yn : [0, T ]→ Rn
be the solution of the differential equation

yn(t) = y(0) +

d∑
i=1

∫ t

0

Miyn(s)dxin(s).

Then, when n → ∞, yn converges in the p-variation distance to some y ∈
Cp−var([0, T ],Rn). The path y is called the solution of the rough differential
equation

y(t) = y(0) +

d∑
i=1

∫ t

0

Miy(s)dxi(s).

Proof. It is a classical result that the solution of the equation

yn(t) = y(0) +

d∑
i=1

∫ t

0

Miyn(s)dxin(s),
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can be expanded as the convergent Volterra series:

yn(t) = yn(s) +

+∞∑
k=1

∑
I=(i1,··· ,ik)

Mi1 · · ·Mik

(∫
∆k[s,t]

dxIn

)
yn(s).

Therefore, in particular, for n,m ≥ 0,

yn(t)− ym(t) =

+∞∑
k=1

∑
I=(i1,··· ,ik)

Mi1 · · ·Mik

(∫
∆k[0,t]

dxIn −
∫

∆k[0,t]

dxIm

)
y(0),

which implies that

‖yn(t)− ym(t)‖ ≤
+∞∑
k=1

Mk

∥∥∥∥∥
∫

∆k[0,t]

dx⊗kn −
∫

∆k[0,t]

dx⊗km

∥∥∥∥∥ ‖y(0)‖

with M = max{‖M1‖, · · · , ‖Md‖}. From Theorem 7.22, there exists a constant
C ≥ 0 depending only on p and

sup
n

[p]∑
j=1

∥∥∥∥∫ dx⊗jn

∥∥∥∥1/j

p
j−var,[0,T ]

such that for k ≥ 1 and n,m big enough:∥∥∥∥∥
∫

∆k[0,·]
dx⊗kn −

∫
∆k[0,·]

dx⊗km

∥∥∥∥∥
p−var,[0,T ]

≤

 [p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗jm

∥∥∥∥1/j

p
j−var,[0,T ]

 Ck(
k
p

)
!
.

As a consequence, there exists a constant C̃ such that for n,m big enough:

‖yn(t)− ym(t)‖ ≤ C̃
[p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗jm

∥∥∥∥1/j

p
j−var,[0,T ]

.

This already proves that yn converges in the supremum topology to some y.
We now have

(yn(t)− yn(s))− (ym(t)− ym(s))

=

+∞∑
k=1

∑
I=(i1,··· ,ik)

Mi1 · · ·Mik

(∫
∆k[s,t]

dxInyn(s)−
∫

∆k[s,t]

dxImym(s)

)
,
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and we can bound∥∥∥∥∥
∫

∆k[s,t]

dxInyn(s)−
∫

∆k[s,t]

dxImym(s)

∥∥∥∥∥
≤

∥∥∥∥∥
∫

∆k[s,t]

dxIn

∥∥∥∥∥ ‖yn(s)− ym(s)‖+ ‖ym(s)‖

∥∥∥∥∥
∫

∆k[s,t]

dxIn −
∫

∆k[s,t]

dxIm

∥∥∥∥∥
≤

∥∥∥∥∥
∫

∆k[s,t]

dxIn

∥∥∥∥∥ ‖yn − ym‖∞,[0,T ] + ‖ym‖∞,[0,T ]

∥∥∥∥∥
∫

∆k[s,t]

dxIn −
∫

∆k[s,t]

dxIm

∥∥∥∥∥ .
Now, there exists a constant C ≥ 0, depending only on p and

sup
n

[p]∑
j=1

∥∥∥∥∫ dx⊗jn

∥∥∥∥1/j

p
j−var,[0,T ]

such that for k ≥ 1 and n,m big enough∥∥∥∥∥
∫

∆k[s,t]

dx⊗kn

∥∥∥∥∥ ≤ Ck(
k
p

)
!
ω(s, t)k/p, 0 ≤ s ≤ t ≤ T,

∥∥∥∥∥
∫

∆k[s,t]

dx⊗kn −
∫

∆k[s,t]

dx⊗km

∥∥∥∥∥
≤

 [p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗km

∥∥∥∥1/j

p
j−var,[0,T ]

 Ck(
k
p

)
!
ω(s, t)k/p,

where ω is a control such that ω(0, T ) = 1. Consequently, there is a constant
C̃, such that

‖(yn(t)− yn(s))− (ym(t)− ym(s))‖

≤C̃

‖yn − ym‖∞,[0,T ] +

[p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗km

∥∥∥∥1/j

p
j−var,[0,T ]

ω(s, t)1/p

This implies the estimate

‖yn − ym‖p−var,[0,T ]

≤C̃

‖yn − ym‖∞,[0,T ] +

[p]∑
j=1

∥∥∥∥∫ dx⊗jn −
∫
dx⊗km

∥∥∥∥1/j

p
j−var,[0,T ]


and thus gives the conclusion. 2
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Exercise 7.27. Let yn : [0, T ]→ Rn be the solution of the differential equation

yn(t) = y(0) +

d∑
i=1

∫ t

0

Miyn(s)dxin(s).

and y be the solution of the rough differential equation:

y(t) = y(0) +

d∑
i=1

∫ t

0

Miy(s)dxi(s).

Show that y ∈ Ωp([0, T ],Rn) and that when n→∞,

[p]∑
j=1

∥∥∥∥∫ dy⊗j −
∫
dy⊗jn

∥∥∥∥1/j

p
j−var,[0,T ]

→ 0.

We can get useful estimates for solutions of rough differential equations.
For that, we need the following real analysis lemma:

Proposition 7.28. For x ≥ 0 and p ≥ 1,

+∞∑
k=0

xk(
k
p

)
!
≤ pex

p

.

Proof. For α > 0, we denote

Eα(x) =

+∞∑
k=0

xk

(kα)!
.

This is a special function called the Mittag-Leffler function. From the binomial
inequality

Eα(x)2 =

+∞∑
k=0

 k∑
j=0

1

(jα)! ((k − j)α)!

xk

≤ 1

α

+∞∑
k=0

2αk
xk

(kα)!
=

1

α
Eα(2αx).

Thus we proved

Eα(x) ≤ 1

α1/2
Eα(2αx)1/2.

Iterating this inequality, k times we obtain

Eα(x) ≤ 1

α
∑k
j=1

1

2j

Eα(2αkx)1/2k .
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It is known (and not difficult to prove, see Exercise 7.29) that

Eα(x) ∼x→∞
1

α
ex

1/α

.

By letting k →∞ we conclude

Eα(x) ≤ 1

α
ex

1/α

.

2

Exercise 7.29. For α ≥ 0, we consider the Mittag-Leffler function

Eα(x) =

+∞∑
k=0

xk

(kα)!
.

Show that

Eα(x) ∼x→∞
1

α
ex

1/α

.

Hint: Compute the Laplace transform of
∑

xαk

(kα−1)! .

This estimate provides the following result:

Proposition 7.30. Let y be the solution of the rough differential equation:

y(t) = y(0) +

d∑
i=1

∫ t

0

Miy(s)dxi(s).

Then, there exists a constant C depending only on p such that for 0 ≤ t ≤ T ,

‖y(t)‖ ≤ p‖y(0)‖e
(CM)p

(∑[p]
j=1‖

∫
dx⊗j‖1/jp

j
−var,[0,t]

)p
,

where M = max{‖M1‖, · · · , ‖Md‖}.

Proof. We have

y(t) = y(0) +

+∞∑
k=1

∑
I=(i1,··· ,ik)

Mi1 · · ·Mik

(∫
∆k[0,t]

dxI

)
y(0).

Thus we obtain

‖y(t)‖ ≤

1 +

+∞∑
k=1

∑
I=(i1,··· ,ik)

Mk

∥∥∥∥∥
∫

∆k[0,t]

dxI

∥∥∥∥∥
 ‖y(0)‖,

and we conclude by using estimates on iterated integrals of rough paths together
(see Theorem 7.25) with the previous lemma. 2
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We now give the Lyons’ continuity result for non linear differential equa-
tions. We first introduce the notion of γ-Lipschitz vector field.

Definition 7.31. A vector field V on Rn is called γ-Lipschitz if it is [γ] times
continuously differentiable and there exists a constant M ≥ 0 such that the
supremum norm of its kth derivatives k = 0, · · · , [γ] and the γ − [γ] Hölder
norm of its [γ]th derivative are bounded by M . The smallest M that satisfies
the above condition is the γ-Lipschitz norm of V and will be denoted ‖V ‖Lipγ .

The non linear version of the Lyons continuity theorem is the following
result that we admit without proof. We refer the interested reader to [?].

Theorem 7.32 (Lyons continuity theorem). Let p ≥ 1. Let x ∈ Ωp([0, T ],Rd)
be a p-rough path with truncated signature

[p]∑
k=0

∫
∆k[s,t]

dx⊗k,

and let xn ∈ C1−var([0, T ],Rd) be an approximating sequence such that

[p]∑
j=1

∥∥∥∥∫ dx⊗j −
∫
dx⊗jn

∥∥∥∥1/j

p
j−var,[0,T ]

→ 0.

Assume that V1, · · · , Vd are γ-Lipschitz vector fields in Rn with γ > p. The
solution of the equation

yn(t) = y(0) +

d∑
j=1

∫ t

0

Vj(yn(s))dxjn(s), 0 ≤ t ≤ T,

converges when n→ +∞ in p-variation to some y ∈ Cp−var([0, T ],Rn) that we
call a solution of the rough differential equation:

y(t) = y(0) +

d∑
j=1

∫ t

0

Vj(y(s))dxj(s), 0 ≤ t ≤ T.

Moreover, there exists a constant C depending only on p, T and γ such that
for every 0 ≤ s < t ≤ T ,

‖y‖p−var,[s,t] ≤ C
(
‖V ‖Lipγ−1‖x‖p−var,[s,t] + ‖V ‖p

Lipγ−1‖x‖pp−var,[s,t]
)
, (7.1)

where we denoted

‖x‖p−var,[s,t] =

[p]∑
j=1

∥∥∥∥∫ dx⊗j
∥∥∥∥1/j

p
j−var,[s,t]

.

Remark 7.33. The estimate (7.1) is often referred to as the Davie estimate.
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5 The Brownian motion as a rough path

It is now time to show how rough paths theory can be used to study Brownian
motion and stochastic differential equations. We first show in this section that
Brownian motion paths are almost surely p-rough paths for 2 < p < 3. The
key estimate is the Garsia-Rodemich-Rumsey inequality.

Theorem 7.34 (Garsia-Rodemich-Rumsey inequality). Let T > 0 and let

Γ : {0 ≤ s, t ≤ T} → R≥0

be a continuous symmetric functional (Γs,t = Γt,s) that vanishes on the diagonal
(Γt,t = 0) and such that there exists a constant C > 0 such that for every
0 ≤ t1 ≤ · · · ≤ tn ≤ T ,

Γt1,tn ≤ C

(
n−1∑
i=1

Γti,ti+1

)
. (7.2)

For q > 1 and α ∈ (1/q, 1), there exists a constant K > 0 such that for all
0 ≤ s ≤ t ≤ T ,

Γqs,t ≤ K|t− s|αq−1

∫ T

0

∫ T

0

Γqu,v
|u− v|1+αq

dudv.

Proof. Step 1. We first assume T = 1 and prove that

Γq0,1 ≤ K
∫ 1

0

∫ 1

0

Γqu,v
|u− v|1+αq

dudv.

Define I(v) =
∫ 1

0

Γqu,v
|u−v|1+αq du so that∫ 1

0

I(v)dv =

∫ 1

0

∫ 1

0

Γqu,v
|u− v|1+αq

dudv.

We can find t0 ∈ (0, 1) such that I(t0) ≤
∫ 1

0

∫ 1

0

Γqu,v
|u−v|1+αq dudv. We construct

then a decreasing sequence (tn)n≥0 by induction as follows. If tn−1 has been
chosen, then we pick tn ∈

(
0, 1

2 tn−1

)
such that

I(tn) ≤ 4

tn−1

∫ 1

0

∫ 1

0

Γqu,v
|u− v|1+αq

dudv, Jn−1(tn) ≤ 4I(tn−1)

tn−1

where we have set Jn−1(s) =
Γqs,tn−1

|s−tn−1|1+αq . We can always find such tn. Other-

wise, we would have
(
0, 1

2 tn−1

)
= A ∪B with

A =

{
t ∈
(

0,
1

2
tn−1

)
, I(t) >

4

tn−1

∫ 1

0

∫ 1

0

Γqu,v
|u− v|1+αq

dudv

}
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B =

{
t ∈
(

0,
1

2
tn−1

)
, Jn−1(t) >

4I(tn−1)

tn−1

}
But, clearly we have

4µ(A)

tn−1

∫ 1

0

∫ 1

0

Γqu,v
|u− v|1+αq

dudv ≤
∫
A

I(t)dt ≤
∫ 1

0

∫ 1

0

Γqu,v
|u− v|1+αq

dudv.

where µ stands for the Lebesgue measure. Hence, if µ(A) > 0, we have µ(A) <
1
4 tn−1. Similarly of course, µ(B) > 0 implies µ(B) < 1

4 tn−1. This contradicts
the fact that

(
0, 1

2 tn−1

)
= A ∪B. Hence tn is well defined if tn−1 is. We have

then

Jn−1(tn) ≤ 4I(tn−1)

tn−1
≤ 16

t2n−1

∫ 1

0

∫ 1

0

Γqu,v
|u− v|1+αq

dudv.

Coming back to the definition of Jn−1 yields then

Γqtn,tn−1

|tn − tn−1|1+αq
≤ 16

t2n−1

∫ 1

0

∫ 1

0

Γqu,v
|u− v|1+αq

dudv.

But it is easily seen that there a constant C > 0 such that

|tn − tn−1|α+1/q

t
2/q
n−1

≤ C(tα−1/q
n − tα−1/q

n+1 ).

Using then the subaddivity of the functional Γ we end up with

Γq0,t0 ≤ K
∫ 1

0

∫ 1

0

Γqu,v
|u− v|1+αq

dudv.

Similarly, by repeating the above argument on the functional Γ1−s,1−t we get
that

Γqt0,1 ≤ K
∫ 1

0

∫ 1

0

Γqu,v
|u− v|1+αq

dudv.

Therefore we proved that for some constant K ′

Γq0,1 ≤ K ′
∫ 1

0

∫ 1

0

Γqu,v
|u− v|1+αq

dudv.

Step 2: We now consider a general functional Γ : {0 ≤ s, t ≤ T} → R≥0

and fix 0 ≤ s < t ≤ T . Considered then the rescaled functional Γ̃u,v =
Γs+u(t−s),s+v(t−s) which is defined for 0 ≤ u, v ≤ 1. From the first step, we
have

Γ̃q0,1 ≤ K
∫ 1

0

∫ 1

0

Γ̃qu,v
|u− v|1+αq

dudv,

and the result follows by a simple change of variable. 2
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As we are going to see, for the Brownian motion the natural integral in
rough paths theory is not Itô’s integral but Stratonovitch’s (see Section 5 for
the definition). If (Bt)t≥0 is d dimensional Brownian motion, we can inductively
define the iterated Stratonovitch integrals

∫
0≤t1≤...≤tk≤t ◦dB

i1
t1 · · · ◦ dB

ik
tk

, and,
as before, it will be convenient to use a concise notation by embedding the set
of iterated integrals in the algebra of formal series:

∫
∆k[s,t]

◦dB⊗k =
∑

I∈{1,...,d}k

(∫
∆k[s,t]

◦dBI
)
Xi1 · · ·Xik .

Exercise 7.35. Show that for m ≥ 1, and t ≥ 0,

E
(∣∣∣∣∫

0≤t1≤...≤tk≤t
◦dBi1t1 · · · ◦ dB

ik
tk

∣∣∣∣m) < +∞.

The following estimate is crucial to apply rough paths theory to Brownian
motion.

Proposition 7.36. Let T ≥ 0, 2 < p < 3 and n ≥ 1. There exists a finite
positive random variable C = C(T, p, n) such that E(Cm) < +∞ for every
m ≥ 1, and for every 0 ≤ s ≤ t ≤ T ,

n∑
k=1

∥∥∥∥∥
∫

∆k[s,t]

◦dB⊗k
∥∥∥∥∥

1/k

≤ C|t− s|1/p.

Proof. Let us consider the functional

Γs,t =

n∑
k=1

∥∥∥∥∥
∫

∆k[s,t]

◦dB⊗k
∥∥∥∥∥

1/k

,

and prove that it satisfies the chain condition (7.2). Using inductively Chen’s
relations, it is seen that

∫
∆k[t1,tN ]

◦dB⊗k =
∑

i1+···+iN−1=k

∫
∆i1 [t1,t2]

◦dB⊗i1 · · ·
∫

∆iN−1 [tN−1,tN ]

◦dB⊗iN−1 .
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Therefore we have∥∥∥∥∥
∫

∆k[t1,tN ]

◦dB⊗k
∥∥∥∥∥

≤
∑

i1+···+iN−1=k

∥∥∥∥∥
∫

∆i1 [t1,t2]

◦dB⊗i1 · · ·
∫

∆iN−1 [tN−1,tN ]

◦dB⊗iN−1

∥∥∥∥∥
≤

∑
i1+···+iN−1=k

∥∥∥∥∥
∫

∆i1 [t1,t2]

◦dB⊗i1
∥∥∥∥∥ · · ·

∥∥∥∥∥
∫

∆iN−1 [tN−1,tN ]

◦dB⊗iN−1

∥∥∥∥∥
≤

∑
i1+···+iN−1=k

Γi1t1,t2 · · ·Γ
iN−1

tN−1,tN

≤
(
Γt1,t2 + · · ·+ ΓtN−1,tN

)k
.

This yields
Γt1,tN ≤ n

(
Γt1,t2 + · · ·+ ΓtN−1,tN

)
.

From the Garsia-Rodemich-Rumsey inequality, for q > 1 and α ∈ (1/q, 1),
there exists therefore a constant K > 0 such that for all 0 ≤ s ≤ t ≤ T ,

Γqs,t ≤ K|t− s|αq−1

∫ T

0

∫ T

0

Γqu,v
|u− v|1+αq

dudv.

The scaling property of Brownian motion and Exercise 7.35 imply that for some
constant K > 0

E(Γqu,v) = K|u− v|q/2.

As a consequence ∫ T

0

∫ T

0

Γqu,v
|u− v|1+αq

dudv < +∞

if α− 1
q <

1
2 and the result follows from Fubini theorem. 2

With this estimate in hands, we are now in position to prove that Brownian
motion paths are p-rough paths for 2 < p < 3. We can moreover give an
explicit approximating sequence. Let us work on a fixed interval [0, T ] and
consider a sequence Dn of subdivisions of [0, T ] such that Dn+1 ⊂ Dn and
whose mesh goes to 0 when n→ +∞. An example is given by the sequence of
dyadic subdivisions. The family Fn = σ(Bt, t ∈ Dn) is then a filtration, that is
an increasing family of σ-fields. We denote by Bn the piecewise linear process
which is obtained from B by interpolation along the subdivision Dn, that is
for tni ≤ t ≤ tni+1,

Bnt =
tni+1 − t
tni+1 − tni

Btni +
t− tni

tni+1 − tni
Btni+1

.
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Theorem 7.37. When n→ +∞, almost surely

‖Bn −B‖p−var,[0,T ] +

∥∥∥∥∫ dBn,⊗2 −
∫
◦dB⊗2

∥∥∥∥1/2

p
2−var,[0,T ]

→ 0.

As a consequence, Brownian motion paths are almost surely p-rough paths for
2 < p < 3.

Proof. We first observe that, due to the Markov property of Brownian motion,
we have for tni ≤ t ≤ tni+1,

E (Bt | Fn) = E
(
Bt | Btni , Btn+1

i

)
.

It is then an easy exercise to check that

E
(
Bt | Btni , Btn+1

i

)
=

tni+1 − t
tni+1 − tni

Btni +
t− tni

tni+1 − tni
Btni+1

= Bnt .

As a conclusion, we get
E (Bt | Fn) = Bnt .

It immediately follows that Bnt → Bt when n → +∞. In the same way, for
i 6= j we have

E
(∫ t

0

BisdB
j
s | Fn

)
=

∫ t

0

Bn,is dBn,js .

Indeed, for 0 < t < T and ε small enough, we have by independence of Bi and
Bj ,

E
(
Bit(B

j
t+ε −B

j
t ) | Fn

)
= E

(
Bit | Fn

)
E
(
Bjt+ε −B

j
t | Fn

)
= Bn,it (Bn,jt+ε−B

n,j
t ),

and we conclude by using the fact that Itô’s integral is a limit in L2 of Riemann
sums. It follows that, almost surely,

lim
n→∞

∫ t

0

Bn,is dBn,js =

∫ t

0

BisdB
j
s .

Since Bi is independent from Bj , the quadratic covariation 〈Bi, Bj〉 is zero.

As a consequence we have
∫ t

0
BisdB

j
s =

∫ t
0
Bis ◦ dBjs . For i = j, we have∫ t

0
Bis ◦ dBis = (Bit)

2. So if we collect the previous results, we established that
almost surely

lim
n→+∞

(
Bnt ,

∫ t

0

Bns ⊗ dBns
)

=

(
Bt,

∫ t

0

Bs ⊗ ◦dBs
)
.

To prove the convergence with the variation norms, we need a uniform Hölder
estimate.
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From Proposition 7.36, we know that there is a finite random variable K1

(that belongs to Lm for every m ≥ 1 ), such that for every i 6= j, 0 ≤ s ≤ t ≤ T ,∣∣∣∣∫ t

s

(Biu −Bis) ◦ dBju
∣∣∣∣ ≤ K1|t− s|2/p.

Since

E
(∫ t

s

(Biu −Bis)dBju | Fn
)

=

∫ t

s

(Bn,iu −Bn,is )dBn,ju ,

we deduce that ∣∣∣∣∫ t

s

(Bn,iu −Bn,is )dBn,ju

∣∣∣∣ ≤ K2|t− s|2/p,

where K2 is a finite random variable that belongs to Lm for every m ≥ 1.
Similarly, of course, we have

‖Bnt −Bns ‖ ≤ K3|t− s|1/p.

Combining the pointwise convergence with these uniform Hölder estimates give
then the expected result. We let the reader work out the details as an exercise.

2

Since a d-dimensional Brownian motion (Bt)t≥0 is a p-rough path for 2 <
p < 3, we know how to give a sense to the signature of the Brownian motion. In
particular, the iterated integrals at any order of the Brownian motion are well
defined. It turns out that these iterated integrals, and this comes a no surprise
in view of the previous result, coincide with iterated Stratonovitch integrals.

Theorem 7.38. If (Bt)t≥0 is a d-dimensional Brownian motion, the signature
of B as a rough path is the formal series:

S(B)t = 1 +

+∞∑
k=1

∫
∆k[0,t]

◦dB⊗k

= 1 +

+∞∑
k=1

∑
I∈{1,...,d}k

(∫
0≤t1≤...≤tk≤t

◦dBi1t1 · · · ◦ dB
ik
tk

)
Xi1 · · ·Xik .

Proof. Let us work on a fixed interval [0, T ] and consider a sequence Dn of
subdivisions of [0, T ] such that Dn+1 ⊂ Dn and whose mesh goes to 0 when
n → +∞. As before, we denote by Bn the piecewise linear process which is
obtained from B by interpolation along the subdivision Dn, that is for tni ≤
t ≤ tni+1,

Bnt =
tni+1 − t
tni+1 − tni

Btni +
t− tni

tni+1 − tni
Btni+1

.
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We know from the previous lecture that Bn converges to B in the p-rough
paths topology 2 < p < 3. In particular all the iterated integrals

∫
∆k[s,t]

dBn,⊗k

converge. We claim that actually,

lim
n→∞

∫
∆k[s,t]

dBn,⊗k =

∫
∆k[0,t]

◦dB⊗k.

Let us denote ∫
∆k[s,t]

∂B⊗k = lim
n→∞

∫
∆k[s,t]

dBn,⊗k.

We are going to prove by induction on k that
∫

∆k[s,t]
∂B⊗k =

∫
∆k[s,t]

◦dB⊗k.

We have∫ T

0

Bns ⊗ dBns =
n−1∑
i=0

∫ tni+1

tni

Bns ⊗ dBns

=

n−1∑
i=0

∫ tni+1

tni

(
tni+1 − s
tni+1 − tni

Btni +
s− tni
tni+1 − tni

Btni+1

)
ds⊗

Btni+1
−Btni

tni+1 − tni

=
1

2

n−1∑
i=0

(
Btni+1

+Btni

)
⊗
(
Btni+1

−Btni
)

By taking the limit when n → ∞, we deduce therefore that
∫

∆2[0,T ]
∂B⊗2 =∫

∆2[0,T ]
◦dB⊗2. In the same way, we have for 0 ≤ s < t ≤ T ,

∫
∆2[s,t]

∂B⊗2 =∫
∆2[s,t]

◦dB⊗2. Assume now by induction, that for every 0 ≤ s ≤ t ≤ T and

1 ≤ j ≤ k,
∫

∆k[s,t]
∂B⊗k =

∫
∆k[s,t]

◦dB⊗k. Let us denote

Γs,t =

∫
∆k+1[s,t]

∂B⊗(k+1) −
∫

∆k+1[s,t]

◦dB⊗(k+1).

From the Chen’s relations, we immediately see that

Γs,u = Γs,t + Γt,u.

Moreover, it is easy to estimate

‖Γs,t‖ ≤ Cω(s, t)
k+1
p ,

where 2 < p < 3 and ω(s, t) = |t− s|. Indeed, the bound∥∥∥∥∥
∫

∆k+1[s,t]

∂B⊗(k+1)

∥∥∥∥∥ ≤ C1ω(s, t)
k+1
p

comes from Theorem 7.25 and the bound∥∥∥∥∥
∫

∆k+1[s,t]

◦dB⊗(k+1)

∥∥∥∥∥ ≤ C2ω(s, t)
k+1
p
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comes from Proposition 7.36. As a consequence of Lemma 7.19, we deduce that
Γs,t = 0 which proves the induction. 2

We finish this section by a very interesting probabilistic object, the expec-
tation of the Brownian signature. If

Y = y0 +

+∞∑
k=1

∑
I∈{1,...,d}k

ai1,...,ikXi1 ...Xik .

is a random series, that is if the coefficients are real random variables defined
on a probability space, we will denote

E(Y ) = E(y0) +
+∞∑
k=1

∑
I∈{1,...,d}k

E(ai1,...,ik)Xi1 ...Xik .

as soon as the coefficients of Y are integrable.

Theorem 7.39. For t ≥ 0,

E (S(B)t) = exp

(
t

(
1

2

d∑
i=1

X2
i

))
.

Proof. An easy computation shows that if In is the set of words with length n
obtained by all the possible concatenations of the words

{(i, i)}, i ∈ {1, ..., d},

1. If I /∈ In then

E

(∫
∆n[0,t]

◦dBI
)

= 0;

2. If I ∈ In then

E

(∫
∆n[0,t]

◦dBI
)

=
t
n
2

2
n
2

(
n
2

)
!
.

Therefore, we have

E (S(B)t) = 1 +

+∞∑
k=1

∑
I∈Ik

t
k
2

2
k
2

(
k
2

)
!
Xi1 ...Xik

= exp

(
t

(
1

2

d∑
i=1

X2
i

))
.

2
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Based on the previous results, it should come as no surprise that differ-
ential equations driven by the Brownian rough path should correspond to
Stratonovitch differential equations. This is indeed the case. For linear equa-
tions, the result is easy to prove as a consequence of the previous proposition.

Theorem 7.40. Let us consider matrices M1, · · · ,Md ∈ Rn×n. For y0 ∈ Rn,
the solution of the rough differential equation

y(t) = y(0) +

d∑
i=1

∫ t

0

Miy(s)dBi(s),

coincides with the solution of the Stratonovitch differential equation

y(t) = y(0) +

d∑
i=1

∫ t

0

Miy(s) ◦ dBi(s).

Proof. The solution of the rough differential equation can be expanded as the
Volterra series:

y(t) = y(0) +

+∞∑
k=1

∑
I=(i1,··· ,ik)

Mi1 · · ·Mik

(∫
∆k[0,t]

∂BI

)
y(0),

where
∫

∆k[0,t]
∂BI is the iterated integral in the rough path sense. This iterated

integral coincides with the iterated Stratonovitch integral, so we have

y(t) = y(0) +

+∞∑
k=1

∑
I=(i1,··· ,ik)

Mi1 · · ·Mik

(∫
∆k[0,t]

◦dBI
)
y(0),

which is the Volterra expansion of the Stratonovitch stochastic differential equa-
tion. 2

The previous theorem extends to the non linear case. We refer the interested
reader to [?] for a proof of the following general result.

Theorem 7.41. Let γ > 2 and let V1, · · · , Vd be γ-Lipschitz vector fields on
Rn. Let x0 ∈ Rn. The solution of the rough differential equation

Xt = x0 +

d∑
i=1

∫ t

0

Vi(Xs) dB
i
s,

is the solution of the Stratonovitch differential equation:

Xt = x0 +

d∑
i=1

∫ t

0

Vi(Xs) ◦ dBis.
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To finish we mention that rough paths theory provides a perfect framework
to study differential equations driven by Gaussian processes. Indeed, let B be
a Gaussian process. A lot of the information concerning the Gaussian process
B is encoded in the rectangular increments of R, which are defined by

Rstuv = E ((Bt −Bs)⊗ (Bv −Bu)) .

We then call 2-dimensional ρ-variation of R the quantity

Vρ(R) ≡ sup


∑

i,j

∥∥∥Rtjtj+1
sisi+1

∥∥∥ρ
1/ρ

; (si), (tj) ∈ Π

 ,

where Π stands for the set of partitions of [0, 1]. One has the following funda-
mental Friz-Victoir theorem concerning the Gaussian rough path existence:

Proposition 7.42 (Friz-Victoir). If there exists 1 ≤ ρ < 2 such that R has
finite ρ-variation, the process B is a p-rough path for any p > 2ρ.

As an illustration, the previous result applies in particular to fractional
Brownian motion. Let B = (B1, . . . , Bd) be a d dimensional fractional Brow-
nian motion defined on a complete probability space (Ω,F ,P), with Hurst
parameter H ∈ (0, 1). It means that B is a centered Gaussian process, whose
coordinates are independent and satisfy

E
((

Bjt −Bjs
)2
)

= |t− s|2H , for s, t ≥ 0. (7.3)

For instance whenH = 1/2 a fractional Brownian motion is a Brownian motion.
It can then be proved that the hypothesis of Proposition 7.42 is satisfied for
a fractional Brownian motion with Hurst parameter H ∈ ( 1

4 , 1), and in that
case ρ = 1/(2H). Thus, by using the rough paths theory, we may define
stochastic differential equations driven by fractional Brownian motions with
Hurst parameter H ∈ ( 1

4 , 1).

Notes and Comments

Section 2. The signature of the path is fascinating object at the intersection
between algebraic geometry, topology, Lie group theory and sub-Riemannian
geometry. Several sub-Riemannian aspects of the signature are studied in the
book [?].

Sections 3,4. The rough paths theory is a relatively new theory that
was built in the paper [?] by T. Lyons. There are now several comprehensive
books about the theory: we mention in particular [?], [?] and [?]. At the
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time of writing, the theory is still a very active domain of research. Recent
important applications have been found in the theory of ill-posed stochastic
partial differential equations (see [?]).

Section 5. The expectation of the signature of the Brownian motion as a
rough path can be used to construct parametrices for semigroups and finds ap-
plications to index theory (see [?]). The rough paths point of view on stochastic
differential equations has several advantages. It comes with previously un-
known deterministic estimates like Davie’s and often provides straightforward
proofs and improvements of classical results like the Stroock-Varadhan support
theorem. We refer to the book [?] for an overview of these applications. Besides
stochastic differential equations driven by Brownian motions, rough paths also
applies to stochastic differential equations driven by general semimartingales
because it may be proved that such processes always are p-rough paths for
2 < p < 3. Of course, the advantage is that the theory even applies to equa-
tions driven by very irregular processes that are not semimartingales like rough
Gaussian processes (for instance the fractional Brownian motion, see [?]). In
that case Itô’s theory does not apply and Lyons’ theory becomes the only way
to define and study such equations.



Appendix A. Unbounded operators

It is a fact that many interesting linear operators are not bounded and only
defined on a dense subset of a Banach space (think of differential operators
in Lp). We collect here some general definitions and basic results about such
operators that are used at some places in this book. The details and the proofs
may be found in the reference book [?].

Let (B1, ‖ · ‖1) and (B2, ‖ · ‖2) be two Banach spaces. Let T : V → B2 be a
linear operator defined on a linear subspace V ⊂ B1. The space V on which T
is defined is called the domain of T and usually denoted by D(T ). If D(T ) is
dense in B1, then T is said to be densely defined.

In the study of unbounded operators like T , it is often useful to consider
the graph:

GT = {(v, Tv), v ∈ D(T )} ,

which is a linear subspace of the Banach space B1 ⊕ B2.

Definition 7.43. The operator T is said to be a closed operator if its graph
GT is a closed linear subspace of B1 ⊕ B2.

The following theorem is known as the closed graph theorem.

Theorem 7.44. Let us assume that D(T ) = B1 . The operator T is bounded
if and only if it is closed.

In general, the closure ḠT of GT needs not to be the graph of an operator.

Definition 7.45. The operator T is said to be closable if there is an operator
T̄ such that

ḠT = GT̄ .

The operator T̄ is then called the closure of T .

If T is densely defined, we define the adjoint of T as the linear operator

T ′ : D(T ′) ⊂ B∗2 → B∗1

which is defined on

D(T ′) = {u ∈ B∗2 , ∃c(u) ≥ 0, ∀v ∈ D(T ), |〈u, Tv〉| ≤ c(u)‖v‖1}

and characterized by the duality formula

〈u, Tv〉 = 〈T ′u, v〉, u ∈ D(T ′), v ∈ D(T ).

We have then the following result.
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Proposition 7.46. Let assume that the Banach spaces B1 and B2 are reflexive.
A densely defined operator

T : D(T ) ⊂ B1 → B2

is closable if and only if T ′ is densely defined.

Let (H, 〈·, ·〉H be a Hilbert space and let A be a densely defined operator
on a domain D(A). We have the following basic definitions.

• The operator A is said to be symmetric if for f, g ∈ D(A),

〈f,Ag〉H = 〈Af, g〉H.

• The operator A is said to be non negative symmetric operator, if it is
symmetric and if for f ∈ D(A),

〈f,Af〉H ≥ 0.

• The adjoint A∗ of A is the operator defined on the domain

D(A∗) = {f ∈ H,∃ c(f) ≥ 0,∀ g ∈ D(A), |〈f,Ag〉H| ≤ c(f)‖g‖H}

and given through the Riesz representation theorem by the formula

〈A∗f, g〉H = 〈f,Ag〉H

where g ∈ D(A), f ∈ D(A∗).

• The operator A is said to be self-adjoint if it is symmetric and if D(A∗) =
D(A).

Let us observe that, in general, the adjoint A∗ is not necessarily densely de-
fined, however it is readily checked that if A is a symmetric operator then,
from Cauchy-Schwarz inequality, D(A) ⊂ D(A∗). We have the following first
criterion for self-adjointness which may be useful.

Lemma 7.47. Let A : D(A) ⊂ H → H be a densely defined operator. Consider
the graph of A:

GA = {(v,Av), v ∈ D(A)} ⊂ H ⊕H,

and the complex structure

J :H⊕H → H⊕H
(v, w)→ (−w, v)

Then, the operator A is self-adjoint if and only if

G⊥A = J (GA) .
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Proof. It is checked that for any densely defined operator A

GA∗ = J
(
G⊥A
)
,

and the conclusion follows from routine computations. 2

The following result is useful in the proof of Friedrichs extension theorem
(Theorem 4.6):

Lemma 7.48. Let A : D(A) ⊂ H → H be an injective densely defined self-
adjoint operator. Let us denote by R(A) the range of A. The inverse operator

A−1 : R(A)→ H

is a densely defined self-adjoint operator.

Proof. First, let us observe that

R(A)⊥ = Ker(A∗) = Ker(A) = {0}.

Therefore R(A) is dense in H and A−1 is densely defined. Now,

G⊥A−1 = J (G−A)
⊥

= J
(
G⊥−A

)
= JJ (G−A)

= J (GA−1) .

2

Definition 7.49. Let X and Y be Banach spaces, A bounded operator T :
X → Y is called compact if T transforms bounded sets into relatively compact
sets. That is, T is compact if and only if for every bounded sequence (xn)n∈N
in X, the sequence (Txn)n∈N has a subsequence convergent in Y .

For instance, an operator whose range is finite dimensional is necessarily a
compact operator.

We have the following results about compact operators: Let X and Y be
Banach spaces and let T : X → Y be a bounded operator.

• If (Tn)n∈N is a sequence of compact operators and Tn → T in the norm
topology, then T is compact.

• If S is a bounded operator from Y to a Banach space Z and if T or S is
compact, then ST is compact.

• T is compact if and only if its adjoint T ′ is a compact operator.
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For self-adjoint compact operators, the spectral theorem takes a particularly
nice form:

Theorem 7.50 (Hilbert-Schmidt theorem). Let T be a compact and self-
adjoint operator defined on a separable Hilbert space H. Then, there is a com-
plete orthonormal basis (φn)n∈N for H so that

Tφn = λnφn,

and λn → 0 as n→∞.

There are two interesting ideals of the class of compact operators: The
trace-class operators and the Hilbert-Schmidt operators.

Definition 7.51. Let H be a separable Hilbert space, (φn)n∈N an orthonormal
basis. Then for every bounded and positive operator T , we define

Tr(T ) =
∑
n∈N
〈φn, Tφn〉.

This (possibly infinite) number is called the trace of T and is independent of
the orthonormal basis chosen.

With obvious notations, we have the following properties:

• Tr(A+B) = Tr(A) + Tr(B).

• Tr(λA) = λTr(A).

• If 0 ≤ A ≤ B, Tr(A) ≤ Tr(B).

Definition 7.52. A bounded operator T defined on a separable Hilbert space
H is said to be a trace class operator if

Tr(
√
T ∗T ) <∞.

It turns out that trace class operators necessarily are compact operators.
Moreover

• If S is a bounded operator if T is a trace class operator, then ST and TS
are trace class operators.

• T is a trace class operator if and only if its adjoint T ′ is a trace class
operator.

• If T is a trace class operator, and if (φn)n∈N is an orthonormal basis, the
series ∑

n∈N
〈φn, Tφn〉.

converges absolutely and the limit is independent of the choice of the
basis. This limit is called the trace of T and denoted as above by Tr(T ).
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Definition 7.53. A bounded operator T defined on a separable Hilbert space
H is said to be a Hilbert-Schmidt operator if

Tr(T ∗T ) <∞.

Hilbert-Schmidt operator operators necessarily are compact operators. More-
over, we have the following properties

• If S is a bounded operator if T is a Hilbert-Schmidt operator, then ST
and TS are Hilbert-Schmidt operators.

• T is a Hilbert-Schmidt operator if and only if its adjoint T ′ is a Hilbert-
Schmidt operator.

• The set of Hilbert-Schmidt operators endowed with the inner product

〈T1, T2〉2 = Tr(T ∗1 T2),

is a Hilbert space.

• A bounded operator is a trace class operator, if and only if it is a product
of two Hilbert-Schmidt operators.

The following theorem completely describes the Hilbert-Schmidt operators
of the L2 space of some measure µ.

Theorem 7.54. Let (Ω, µ) be a measure space and H = L2
µ(Ω,R). A bounded

operator K on H is a Hilbert-Schmidt operator if and only if there is a kernel

K ∈ L2
µ⊗µ(Ω× Ω,R),

such that

Kf(x) =

∫
Ω

K(x, y)f(y)µ(dy).

Moreover,

‖K‖22 =

∫
Ω

K(x, y)2µ(dx)µ(dy).



Appendix B. Regularity theory

We present some basic facts of the theory of distributions and Sobolev spaces
and applications to elliptic differential operators. Most of these facts will be
stated without proof. The material sketched here is covered in more details in
the books [?] or [?] to which we refer the interested reader for the proofs.

Let Ω be a non empty open set in Rn. We denote by Cc(Ω,R) the set of
smooth and compactly supported functions on Ω and by Ck(Ω,R), k ≥ 0, the
set of functions on Ω that are k times continuously differentiable.

It is convenient to use the multi-index notation, that is if α = (α1, · · · , αm) ∈
{1, · · · , n}m and f ∈ Ckc (Ω,R), for |α| = α1 + · · ·+ αm ≤ k, we denote

∂αf =
∂|α|

∂xα1 · · · ∂xαn
.

As a first step, we define the notion of sequential convergence on Cc(Ω,R). A
sequence φn ∈ Cc(Ω,R) is said to sequentially converge to φ ∈ Cc(Ω,R):

φn →s.c. φ

if the φ′ns are supported in a common compact subset of Ω and ∂αφn → ∂αφ
uniformly for every multi-index α.

If u is linear form on Cc(Ω,R), for φ ∈ Cc(Ω,R) we denote

〈u, φ〉 = u(φ).

Definition 7.55. A distribution on Ω is a linear form u on Cc(Ω,R) that is
continuous in the sense that if φn →s.c. φ then 〈u, φn〉 → 〈u, φ〉. The space of
distributions on Ω is denoted by D′(Ω). The space D′(Ω) is naturally endowed
of the weak topology: a sequence un ∈ D′(Ω) converges to u ∈ D′(Ω) if and
only if for every φ ∈ Cc(Ω,R).

Distributions may be seen as generalized functions. Indeed, if f is a locally
integrable on Ω, then u(φ) =

∫
Ω
fφdx defines a distribution on Ω, this corre-

spondence being one to one (if we regard two functions that are almost surely
equal as equal). That’s why it is very common to use the notation

u(φ) =

∫
Ω

uφdx,

even when u is not a function. More generally, any Borel measure on Ω defines
a distribution: u(φ) =

∫
Ω
φdµ.

One very nice feature of distributions that make them extremely useful is
that we may differentiate them as many times as we wish. Indeed, let α be a
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multi-index. The operator ∂α defined on Cc(Ω,R) is sequentially continuous,
that is if φn →s.c. φ then ∂αφn →s.c. ∂αφ. We can then define ∂α on D′(Ω),
through the integration by parts formula:

〈∂αu, φ〉 = (−1)|α|〈u, ∂αφ〉.

In the same spirit we may multiply distributions by smooth functions. Let f ∈
C∞(Ω,R). The operator φ→ fφ defined on Cc(Ω,R) is sequentially continuous.
For u ∈ D′(Ω) we can therefore define fu ∈ D′(Ω) by the formula

〈fu, φ〉 = 〈u, fφ〉.

In particular, if

L =

n∑
i,j=1

σij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
,

is a diffusion operator, and u ∈ D′(Ω), we have

〈Lu, φ〉 = 〈u, L′φ〉,

where

L′φ =

n∑
i,j=1

∂2

∂xi∂xj
(σijφ)−

n∑
i=1

∂

∂xi
(biφ).

More generally, of course, any differential operator on Ω can be defined on
distributions. It is then possible to try to solve partial differential equations
in the space D′(Ω). We then speak of weak solutions, by opposition to strong
solutions where the unknown is a function.

Clearly, if u ∈ Ck(Ω,R), the distribution derivatives of u of order ≤ k are
just the pointwise derivatives but the converse is also true; namely, if u ∈
C0(Ω,R) and if its distribution derivatives are also in C0(Ω,R), for |α| ≤ k,
then u ∈ Ck(Ω,R).

There is a special class of distributions that are of great interest: the tem-
pered distributions. These are the distributions that have a Fourier transform.

To start with, let us first observe that we defined distributions as a linear
forms on the space of real functions Cc(Ω,R), but of course we may define in a
similar way complex distributions by using the set of complex functions Cc(Ω,C)
as a set of test functions. It is readily checked that what we claimed so far on
distributions may be extended in a trivial manner to complex distributions.

Let us now recall that the Schwartz space S is the space of smooth rapidly
decreasing complex valued functions. This space can be endowed with the
following topology: φn → φ in S if and only if

sup
x∈Rn

|xα(∂βφn − ∂βφ)| → 0,

for every multi indices α and β (the notation xα means xα1
1 · · ·xαnn ).



5 The Brownian motion as a rough path 267

Definition 7.56. A tempered distribution on Rn is a linear form u on S that
is continuous in the sense that if φn → φ in S then 〈u, φn〉 → 〈u, φ〉. The set
of tempered distributions is denoted by S ′.

The space Cc(Rn,C) is dense in S for the topology of S. Therefore every
tempered distribution is eventually a distribution. The following two facts may
be checked:

• If u ∈ S ′, then for every multi index α, ∂αu ∈ S ′.

• If u ∈ S ′ and if f ∈ C∞(Rn,C) is such that for every multi index ∂αf
grows at most polynomially at infinity, then fu ∈ S ′.

The importance of tempered distributions lies in the fact that they admit a
Fourier transform. Let us first recall that if f : Rn → R is an integrable
function, its Fourier transform is the bounded function on Rn defined by

f̂(ξ) =

∫
Rn
e−2iπ〈ξ,x〉f(x)dx.

The Fourier transform maps S onto itself, is continuous (for the topology on S
described above), and moreover satisfies for f, g ∈ S,∫

Rn
f̂gdx =

∫
Rn
fĝdx.

It is therefore consistent to define the Fourier transform of a tempered distri-
bution u ∈ S ′ by the requirement

〈û, φ〉 = 〈u, φ̂〉, φ ∈ S.

Definition 7.57. Let s ∈ R. We define the Sobolev space of order s:

Hs(Rn) =

{
f ∈ S ′, f̂ is a function and ‖f‖2s =

∫
Rn
|f̂(ξ)|2(1 + ‖ξ‖2)sdξ < +∞

}
.

The Sobolev space Hs(Rn) is a Hilbert space with Hermitian inner product

〈f, ḡ〉s =

∫
Rn
f̂(ξ)ĝ(ξ)(1 + ‖ξ‖2)sdξ,

and the Fourier transform is a unitary isomorphism from Hs(Rn) to L2
µ(Rn,C)

where
µ(dξ) = (1 + ‖ξ‖2)sdξ.

If s ≤ t, we have Hs(Rn) ⊂ Ht(Rn). In particular, for s ≥ 0, Hs(Rn) ⊂
H0(Rn) = L2(Rn,C).

One of the most useful results of the theory of Sobolev spaces is the following
theorem, which is sometimes known as Sobolev lemma. It quantifies the simple
idea that if f is a tempered distribution whose Fourier transform decreases fast
enough at infinity , then f is actually a function that satisfies some regularity
properties. More precisely:
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Theorem 7.58. (Sobolev lemma) If s > k + n
2 , then Hs(Rn) ⊂ Ck(Rn,C).

Proof. The proof is very simple and explains where the k + n
2 comes from.

Let f ∈ Hs(Rn), with s > k + n
2 . We have for |α| ≤ k,∫

Rn
|ξαf̂(ξ)|dξ

≤C
∫
Rn

(1 + |ξ|2)k/2|f̂(ξ)|dξ

≤C
∫
Rn

(1 + |ξ|2)
k−s
2 |f̂(ξ)|(1 + ‖ξ‖2)

s
2 dξ

≤C‖f‖s
(∫

Rn
(1 + |ξ|2)k−sdξ

)1/2

.

Since, s > k+ n
2 , the integral

∫
Rn(1 + |ξ|2)k−sdξ is finite. We deduce therefore

that if |α| ≤ k, then |ξαf̂(ξ)| is integrable, which immediately implies from the
inverse Fourier transform formula that f ∈ Ck(Rn,C). 2

As a corollary of Sobolev lemma, we obtain

Corollary 7.59. If f ∈ Hs(Rn), for all s ∈ R, then f ∈ C∞(Rn,C).

An important feature of Sobolev spaces is that they may be localized. To
be precise, if for an open set Ω ⊂ Rn, we define Hlocs (Ω) as being the set of
distributions f such that for every φ ∈ Cc(Ω,C), fφ ∈ Hs(Rn), then it may be
shown that

Hs(Rn) ⊂ Hlocs (Ω).

If Ω is an open set in Rn, we define H0
s(Ω) as the closure of Cc(Ω,C) in

Hs(Rn).
The following compactness result theorem is then often extremely useful.

Theorem 7.60. (Rellich’s theorem) If Ω ⊂ Rn is bounded and s > t, the
inclusion map

ι : H0
s(Ω)→ H0

t (Ω)

is compact.

A diffusion operator

L =

n∑
i,j=1

σij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
,

where bi and σij are continuous functions on Rn such that for every x ∈ Rn,
the matrix (σij(x))1≤i,j≤n is a symmetric and postive definite matrix is said to
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be an elliptic diffusion operator. The first and canonical example of an elliptic
diffusion operator is the Laplace operator on Rn:

∆ =

n∑
i=1

∂2

∂x2
i

.

The Sobolev embedding theorem for elliptic diffusion operators is the fol-
lowing theorem:

Theorem 7.61 (Local Sobolev embedding theorem). Let L be an elliptic dif-
fusion operator with smooth coefficients. Suppose that Ω is a bounded open set
in Rn. Then for any s ∈ R, there is a positive constant C such that for every
u ∈ H0

s(Ω),
‖u‖s ≤ C (‖Lu‖s−2 + ‖u‖s−1)

As a corollary of it, it is possible to show the following regularization prop-
erty for L.

Corollary 7.62. Let L be an elliptic diffusion operator with smooth coeffi-
cients. Suppose that Ω is an open set in Rn. If u ∈ Hlocs (Ω) and Lu ∈ Hlocs−1(Ω),
then u ∈ Hlocs+1(Ω).

The Sobolev embedding theorem is related to the notion of hypoellipticity:

Definition 7.63. Let A be a differential operator on Rn. A is said to be a
hypoelliptic operator if for every open set Ω ⊂ Rn, and every distribution u

Au ∈ C∞(Ω,C)⇒ u ∈ C∞(Ω,C).

A fundamental consequence of the Sobolev embedding theorem, is the fol-
lowing theorem which, in this form is due to H. Weyl.

Theorem 7.64. Any elliptic diffusion operator with smooth coefficients is hy-
poelliptic.

Another consequence of the theory of Sobolev spaces is the following regu-
larization property of elliptic diffusion operators:

Proposition 7.65. Let L be an elliptic diffusion operator with smooth co-
efficients on Rn which is symmetric with respect to a Borel measure µ. Let
u ∈ L2

µ(Rn,R) such that

Lu,L2u, · · · , Lku ∈ L2
µ(Rn,R),

for some positive integer k. If k > n
4 , then u is a continuous function, moreover,

for any bounded open set Ω ⊂ Rn, and any compact set K ⊂ Ω, there exists a
positive constant C (independent of u) such that(

sup
x∈K
|u(x)|

)2

≤ C

 k∑
j=0

‖Lju‖2L2
µ(Ω,R)

 .
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More generally, if k > m
2 + n

4 for some non negative integer m, then u ∈
Cm(Rn,R) and for any bounded open set Ω ⊂ Rn, and any compact set K ⊂ Ω,
there exists a positive constant C (independent of u) such that(

sup
|α|≤m

sup
x∈K
|∂αu(x)|

)2

≤ C

 k∑
j=0

‖Lju‖2L2
µ(Ω,R)

 .



Conventions and frequently used notations

Unless specified otherwise, the Borel measures we consider on Rn are assumed
to be Radon measures, that is are finite on compact sets.

R≥0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [0,+∞)
Rn×p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Set of n× p matrices
cA or Ac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Complement of the set A
[x] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Integer part of x
x ∧ y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Minimum between x and y
Γ(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Γ(x) =

∫ +∞
0

tx−1e−tdt
A(A,B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Set of functions A→ B
C(A,B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Set of continuous functions A→ B
Ck(A,B) . . . . . . . . . . . . . . . Functions A→ B k-times continuously differentiable
Cc(A,B) . . . . . . . Functions A→ B smooth and compactly supported inside A
C0(A,B) . . . . . . . . . . . . . . . . Continuous functions A→ B whose limits at ∞ is 0
Ck,l(A×B,C) . . . . . . . . Functions A×B → C which are k-times continuously
differentiable in the first variables and l times in the second’s
T (A,B) . . . . . . . . . . . . . . . . . . . . . . . . . . .σ-field on A(A,B) generated by cylinders
B(A,B) . . . . . . . . . . . . . . . . . . . . . . . . . . . .σ-field on C(A,B) generated by cylinders
B(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Borel σ-field on A
Lpµ(A,B) . . . . . . . . . . . . . . . . . . . . Lp space of functions A→ B for the measure µ
Lp(F ,P) . . . . . . . . . . . . . . . . . . . Real Lp space of F measurable random variables
∆n[0, t] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{0 = tn0 ≤ tn1 ≤ ... ≤ tnn = t}∫
HsdMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Itô integral∫
Hs ◦ dMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stratonovitch integral
Hs(Rn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sobolev space of order n
H0
s(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Closure of Cc(Ω,C) in Hs(Rn)

D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Malliavin derivative
δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Divergence operator
Dk,p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Domain of Dk in Lp(F ,P)
‖ · ‖p−var,[s,t] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p-variation norm on [s, t]
‖ · ‖∞,[s,t] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .supremum norm on [s, t]

Cp−var([s, t],Rd) . . . . . Continuous paths [s, t]→ Rd with bounded p-variation∫
∆k[s,t]

dxI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∫
s≤t1≤t2≤···≤tk≤t dx

i1(t1) · · · dxik(tk)

Ωp([0, T ],Rd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Space of p-rough paths


