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Preface

The aim of the present text is to provide a self-contained introduction to the

local geometry of the stochastic flows associated with stochastic differential

equations.

The point of view we want to develop is that the local geometry of any

stochastic flow is determined very precisely and explicitly by a universal

formula referred to as the Chen-Strichartz formula. The natural geometry

associated with the Chen-Strichartz formula is the sub-Riemannian geom-

etry whose main tools are introduced throughout the text. By using the

connection between stochastic flows and partial differential equations, we

apply this point of view to the study of hypoelliptic operators written in

Hörmander’s form.

Many results contained in this text stem from my stay at the Technical

University of Vienna where I had the great pleasure to discuss passion-

ately with Josef Teichmann. I learnt a lot from him and I thank him very

warmly. I also would like to take this opportunity to thank Nicolas Victoir

for reading early drafts of various parts of the text and for his valuable

suggestions.

F. Baudoin,

Toulouse, June 2004
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Chapter 1

Formal Stochastic Differential

Equations

The goal of this first chapter is to establish the Chen-Strichartz formula

which, in a way, is a cornerstone of this book. This formula is universal and

determines very precisely and explicitly the local structure of any stochastic

flow. To derive this formula, it is quite convenient to work in an abstract

and formal setting, in which we do not have to care about convergence

questions.

The reader which is not so familiar with the theory of stochastic differ-

ential equations and vector fields is invited read the Appendices A and B

which are included at the end of the book.

1.1 Motivation

Let us consider a stochastic differential equation on Rn of the type

Xx0
t = x0 +

d∑

i=1

∫ t

0

Vi(X
x0
s ) ◦ dBi

s, t ≥ 0, (1.1)

where:

(1) x0 ∈ Rn;

(2) V1, ..., Vd are C∞ bounded vector fields on Rn;

(3) ◦ denotes Stratonovitch integration;

(4) (Bt)t≥0 = (B1
t , ..., B

d
t )t≥0 is a d-dimensional standard Brownian mo-

tion.

1
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Let f : Rn → R be a smooth function and denote by (Xx0
t )t≥0 the solution

of (2.1) with initial condition x0 ∈ Rn. First, by Itô’s formula, we have

f(Xx0
t ) = f(x0) +

d∑

i=1

∫ t

0

(Vif)(Xx0
s ) ◦ dBi

s, t ≥ 0.

Now, a new application of Itô’s formula to Vif(Xx
s ) leads to

f(Xx0
t ) = f(x0) +

d∑

i=1

(Vif)(x0)B
i
t +

d∑

i,j=1

∫ t

0

∫ s

0

(VjVif)(Xx0
u ) ◦ dBj

u ◦ dBi
s.

We can continue this procedure to get after N steps

f(Xx0
t ) = f(x0) +

N∑

k=1

∑

I=(i1,...ik)

(Vi1 ...Vik
f)(x0)

∫

∆k[0,t]

◦dBI + RN(t),

for some remainder term RN , where we used the notations:

(1)

∆k[0, t] = {(t1, ..., tk) ∈ [0, t]k, t1 ≤ ... ≤ tk};

(2) If I = (i1, ...ik) ∈ {1, ..., d}k is a word with length k,

∫

∆k[0,t]

◦dBI =

∫

0≤t1≤...≤tk≤t

◦dBi1
t1 ◦ ... ◦ dBik

tk
.

If we dangerously do not care about convergence questions (these questions

are widely discussed in [Ben Arous (1989b)]), it is tempting to let N → +∞
and to assume that RN → 0. We are thus led to the nice (but formal!)

formula

f(Xx0
t ) = f(x0) +

+∞∑

k=1

∑

I=(i1,...ik)

(Vi1 ...Vik
f)(x0)

∫

∆k[0,t]

◦dBI . (1.2)

We can rewrite this formula in a more convenient way. Let Φt be the

stochastic flow associated with the stochastic differential equation (2.1).

There is a natural action of Φt on smooth functions: The pull-back action

given by

(Φ∗
t f)(x0) = (f ◦ Φt)(x0) = f(Xx0

t ).
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The formula (1.2) shows then that we have the following formal develop-

ment for this action

Φ∗
t = Id +

+∞∑

k=1

∑

I=(i1,...ik)

Vi1 ...Vik

∫

∆k[0,t]

◦dBI . (1.3)

Though this formula does not make sense from an analytical point of view,

at least, it shows that the probabilistic information contained in the stochas-

tic flow associated with the stochastic differential equation (1.1) is given by

the set of Stratonovitch chaos
∫
∆k[0,t] ◦dBI . What is a priori less clear is

that the algebraic information which is relevant for the study of Φ∗
t is given

by the structure of the Lie algebra generated by the V ′
i s, and this is pre-

cisely this aspect we want to stress in this chapter which is devoted to the

study of formal objects like

Id +
+∞∑

k=1

∑

I=(i1,...ik)

Vi1 ...Vik

∫

∆k[0,t]

◦dBI .

Such objects and their relations with flows seem to appear the first time in

the works of K.T. Chen [Chen (1957)], [Chen (1961)].

1.2 The signature of a Brownian motion

Let us denote by R[[X1, ..., Xd]] the non-commutative algebra of formal

series with d indeterminates.

Definition 1.1 The signature of a d-dimensional standard Brownian mo-

tion (Bt)t≥0 is the element of R[[X1, ..., Xd]] defined by

S(B)t = 1 +

+∞∑

k=1

∑

I=(i1,...ik)

Xi1 ...Xik

∫

∆k[0,t]

◦dBI , t ≥ 0.

Remark 1.1 We define the signature by using Stratonovitch’s integrals

because we keep in mind the connection with stochastic flows which appeared

with formula (1.3). Nevertheless, it is possible to define a signature by using

Itô’s integrals. The link between these two signatures is given in Proposition

1.2 below.

Remark 1.2 In the same way, it is of course also possible to define the

signature of a general semimartingale.



March 24, 2007 0:33 WSPC/Book Trim Size for 9in x 6in source

4 An Introduction to the Geometry of Stochastic Flows

Observe that the signature hence defined is the solution of the formal

stochastic differential equation

S(B)t = 1 +

d∑

i=1

∫ t

0

S(B)sXi ◦ dBi
s, t ≥ 0. (1.4)

Such linear equations appear in the study of Brownian motions on Lie

groups. Indeed, let G be a Lie group with Lie algebra g.

Definition 1.2 A process (Xt)t≥0 with values in G is called a (left)

Brownian motion on G if:

(1) (Xt)t≥0 is continuous;

(2) for each s ≥ 0, the process
(
X−1

s Xt+s

)
t≥0

is independent of the process

(Xu)0≤u≤s;

(3) for each s ≥ 0, the processes
(
X−1

s Xt+s

)
t≥0

and (Xt)t≥0 are identical

in law.

In a general way, one can construct Brownian motions on Lie groups by

solving differential equations. Let us consider V1, ..., Vd ∈ g. As explained

in Appendix B, V1, ..., Vd ∈ g can be seen as left invariant vector fields on

G, so that we can consider the following stochastic differential equation

Xt = 1G +
∑

i=1

∫ t

0

Vi(Xs) ◦ dBi
s, t ≥ 0, (1.5)

where (Bt)t≥0 is a standard Brownian motion on Rd. For instance, if G is

a linear group of matrices, equation (1.5) can be rewritten

Xt = 1G +
∑

i=1

∫ t

0

XsVi ◦ dBi
s.

It is easily seen that there is a unique solution (Xt)t≥0 to the stochastic

differential equation (1.5), and this solution is a (left) Brownian motion on

G. The process (Xt)t≥0 is called a lift of (Bt)t≥0 in G. It is interesting to

note that, conversely, each Brownian motion on G is solution of a stochastic

differential equation

Xt = X0 +

∫ t

0

V0(Xs)ds+
∑

i=1

∫ t

0

Vi(Xs) ◦ dBi
s, t ≥ 0,

where V0, V1, ..., Vd are left-invariant vector fields on G; for further details

on this, we refer to [Hunt (1958)] and [Yosida (1952)].
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With this in mind, we interpret now R[[X1, ..., Xd]] as the universal en-

veloping algebra of the free Lie algebra with d generators fd. So, with this

interpretation, at the formal level the signature of (Bt)t≥0 can be inter-

preted as a lift of (Bt)t≥0 in the formal object exp(fd).

On the other hand, the first section of this chapter has shown that the

pull-back action on functions of the stochastic flow (Φt)t≥0 associated with

the stochastic differential equation

Xx0
t = x0 +

d∑

i=1

∫ t

0

Vi(X
x0
s ) ◦ dBi

s, t ≥ 0,

solves formally the stochastic differential equation

Φ∗
t = Id +

∑

i=1

∫ t

0

Φ∗
sVi ◦ dBi

s,

so that (Φ∗
t )t≥0 can formally be seen as a lift of (Bt)t≥0 in the formal

object exp (L(V1, ..., Vd)) where L(V1, ..., Vd) is the Lie algebra generated

by V1, ..., Vd.

Therefore, since fd is a universal object in the theory of Lie algebras,

the signature appears as a universal object in the theory of stochastic flows.

In particular, if we do not care about convergence questions, any algebraic

formula concerning the signature of (Bt)t≥0 can be applied to study the

stochastic flow associated with any stochastic differential equation driven

by (Bt)t≥0. As it will be seen in the next chapters, one of the most il-

luminating example in this direction is certainly the universality of the

Chen-Strichartz formula; an other example is given by the expectation of

the signature (see the end of the chapter), a purely algebraic object, which

explains in a different way than the usual one, the Markov property shared

by any process that solves a stochastic differential equation driven by Brow-

nian motions.

We have a fundamental flow property for the signature which stems

directly from the following key but simple relations, known as the Chen’s

relations since the seminal work [Chen (1957)].

Lemma 1.1 For any word (i1, ..., in) ∈ {1, ..., d}n and any 0 < s < t,

∫

∆n[0,t]

◦dB(i1,...,in) =

n∑

k=0

∫

∆k[0,s]

◦dB(i1,...,ik)

∫

∆n−k[s,t]

◦dB(ik+1,...,in),

where we used the following notations:
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(1)
∫

∆k[s,t]

◦dB(i1,...,ik) =

∫

s≤t1≤...≤tk≤t

◦dBi1
t1 ◦ ... ◦ dBik

tk
;

(2) if I is a word with length 0, then
∫
∆0[0,t] ◦dBI = 1.

Proof. It follows readily by induction on n by noticing that

∫

∆n[0,t]

◦dB(i1,...,in) =

∫ t

0

(∫

∆n−1[0,tn]

◦dB(i1,...,in−1)

)
◦ dBin

tn
.

�

Proposition 1.1 For 0 < s < t,

S(B)t = S(B)s


1 +

+∞∑

k=1

∑

I=(i1,...ik)

Xi1 ...Xik

∫

∆k[s,t]

◦dBI


 .

Proof. We have, thanks to the previous lemma,

S(B)s

(
1 +

+∞∑

k=1

∑

I

Xi1 ...Xik

∫

∆k[s,t]

◦dBI

)

=1 +

+∞∑

k,k′=1

∑

I,I′

Xi1 ...Xik
Xi′1

...Xi′
k′

∫

∆k[s,t]

◦dBI

∫

∆k′ [0,s]

◦dBI′

=1 +
+∞∑

k=1

∑

I

Xi1 ...Xik

∫

∆k[0,t]

◦dBI

=S(B)t.
�

Remark 1.3 Observe that if I ∈ {1, ..., d}k is a word with length k then

for any 0 < s < t:

(1)
∫
∆k[s,t]

◦dBI is independent from (Bu)u≤s;

(2)
∫

∆k[s,t]

◦dBI =law

∫

∆k[0,t−s]

◦dBI .

Therefore, we can roughly conclude that:

(1) for each s ≥ 0, the process
(
S(B)−1

s S(B)t+s

)
t≥0

is independent of the

process (S(B)u)0≤u≤s;
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(2) for each s ≥ 0, the processes
(
S(B)−1

s S(B)t+s

)
t≥0

and (S(B)t)t≥0 are

identical in law.

By using the relation between Stratonovitch’s and Itô’s integral (see Ap-

pendix A), it is possible to give a formula for the signature of a Brownian

motion which only involves Itô’s iterated integrals.

Proposition 1.2 We have

S(B)t = 1 +

+∞∑

k=1

∑

I∈{0,1,...,d}k

Xi1 ...Xik

∫

∆k[0,t]

dBI , t ≥ 0,

where we used the following notations:

(1)

X0 =
1

2

d∑

i=1

X2
i , B

0
t = t;

(2)
∫

∆k[0,t]

dBI =

∫

0≤t1≤...≤tk≤t

dBi1
t1 ...dB

ik

tk
.

Proof. Let I = (i1, ..., ik) ∈ {1, ..., d}k. From the definition of

Stratonovitch’s integrals, we have

∫

∆k[0,t]

◦dBI =

∫ t

0

(∫

∆k−1[0,tk]

◦dBi1,...,ik−1

)
dBik

tk

+
1

2
τik−1,ik

∫ t

0

(∫

∆k−2[0,tk−1]

◦dBi1,...,ik−2

)
dtk−1,

where

τik−1,ik
= 0 if ik−1 6= ik

= 1 if ik−1 = ik.

Consider now the smallest set I of words which satisfies the following prop-

erties:

(1) I ∈ I;

(2) if J = (j1, ..., jl) ∈ I and if jm = jm+1 6= 0 for some 1 ≤ m ≤ l − 1,

then (j1, ..., jm−1, 0, jm+2, ..., jl) ∈ I.
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By iterating the previous formula, we get
∫

∆k[0,t]

◦dBI =
∑

J∈I

1

2k−|J|

∫

∆|J|[0,t]

dBJ ,

where | J | denotes the length of the word J . The expected result follows

readily. �

Remark 1.4 Observe that if we write equation (1.4) in Itô’s form, we

get

S(B)t = 1 +
1

2

∫ t

0

S(B)s

(
d∑

i=1

X2
i

)
ds+

d∑

i=1

∫ t

0

S(B)sXidB
i
s,

which explains intuitively formula of Proposition 1.2.

1.3 The Chen-Strichartz development formula

This section is devoted to the proof of the Chen-Strichartz development

formula. The formula we give is actually a restatement of a result of [Chen

(1957)] and [Strichartz (1987)], and can be seen as a deep generalization of

the Baker-Campbell-Hausdorff formula (see Appendix B).

The Chen-Strichartz formula is an explicit formula for lnS(B)t. In

particular, it appears that lnS(B)t is a Lie element, a result which is far

from being obvious at a first look. As it is illustrated in this book, the

geometric consequences of this development are rather deep. Before we go

into the heart of this formula, let us first try to understand a simple case:

the commutative case.

We denote Sk the group of the permutations of the index set {1, ..., k}
and if σ ∈ Sk, we denote for a word I = (i1, ..., ik), σ · I the word

(iσ(1), ..., iσ(k)). Now, let us observe that if X1, ..., Xd were commuting,

we would have

S(B)t = exp

(
d∑

i=1

XiB
i
t

)
.

Indeed in that case, by symmetrization, we get

S(B)t = 1 +

+∞∑

k=1

∑

I=(i1,...,ik)

Xi1 ...Xik

(
1

k!

∑

σ∈Sk

∫

∆k[0,t]

◦dBσ·I
)
.
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Now observe that
∑

σ∈Sk

∫

∆k[0,t]

◦dBσ·I = Bi1
t ...B

ik

t ,

which implies,

S(B)t = 1 +

+∞∑

k=1

1

k!

∑

I=(i1,...,ik)

Xi1 ...Xik
Bi1

t ...B
ik

t = exp

(
d∑

i=1

XiB
i
t

)
.

Of course, in the general case, this formula does not hold anymore. But,

we still have a nice formula for lnS(B)t which involves iterated functionals

of the commutators XiXj −XjXi.

We define the bracket between two elements U and V of R[[X1, ..., Xd]]

by

[U, V ] = UV − V U,

and it is easily checked that this bracket endows R[[X1, ..., Xd]] with a Lie

algebra structure. If I = (i1, ..., ik) ∈ {1, ..., d}k is a word, we denote by XI

the commutator defined by

XI = [Xi1 , [Xi2 , ..., [Xik−1
, Xik

]...].

If σ ∈ Sk, we denote e(σ) the cardinality of the set

{j ∈ {1, ..., k − 1}, σ(j) > σ(j + 1)}.

Theorem 1.1 We have

S(B)t = exp



∑

k≥1

∑

I=(i1,...,ik)

ΛI(B)tXI


 , t ≥ 0,

where:

ΛI(B)t =
∑

σ∈Sk

(−1)
e(σ)

k2

(
k − 1

e(σ)

)
∫

∆k[0,t]

◦dBσ−1·I .

Proof. We shall proceed in several steps.

Step 1. First, we write

S(B)t = 1 +

+∞∑

k=1

∫

∆k[0,t]

◦dωs1 ... ◦ dωsk
,
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where we used the notation

dω =
d∑

i=1

XidB
i.

Now we have,

S(B)t = exp (lnS(B)t) = exp

(
+∞∑

k=1

(−1)k−1

k
(S(B)t − 1)k

)
.

Therefore we get,

S(B)t = expZt,

with

Zt =

+∞∑

k=1

(−1)k−1

k

(
+∞∑

n=1

∫

∆n[0,t]

◦dωs1 ... ◦ dωsn

)k

. (1.6)

For each positive integer r, consider all ways of writing

r = p1 + ...+ pm, m = 1, ..., r,

for pj positive integers, and set q0 = 0 and qj = p1 + ...+ pj, for j ≥ 1. We

can now expand out

+∞∑

k=1

(−1)k−1

k

(
+∞∑

n=1

∫

∆n[0,t]

◦dωs1 ... ◦ dωsn

)k

,

to obtain, thanks to Lemma 1.1,

Zt =

+∞∑

r=1

r∑

m=1

∑

pj

(−1)m−1

m

∫
◦dωs1 ... ◦ dωsr

,

where the integral is taken over the region given by the inequalities

0 < s1 < ... < sq1 < t,

0 < sq1+1 < ... < sq2 < t

· · ·
0 < sqm−1+1 < ... < sqm

< t.

(1.7)
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Step 2. By applying now the generalized Baker-Campbell-Hausdorff for-

mula (B.4) of Appendix B, we obtain

Zt =

+∞∑

r=1

r∑

m=1

∑

pj

(−1)m−1

mr

∫
[...[◦dωs1 , ◦dωs2 ]...], ◦dωsr

], (1.8)

where the integral is taken over the same region. The domain determined

by the inequalities (1.7) can be written as the union of simplices obtained

from the simplex ∆r[0, t] by permuting the variables, actually

∫
[...[◦dωs1 , ◦dωs2 ]...], ◦dωsr

] =
∑∫

∆r[0,t]

[...[◦dωsσ(1)
, ◦dωsσ(2)

]...], ◦dωsσ(r)
],

where the inner sum is taken over the permutations σ ∈ Sr that satisfy

σ(qj + 1) < σ(qj + 2) < ... < σ(qj+1), j = 0, · · · ,m− 1.

Therefore, by regrouping the terms in (1.8), we obtain that Zt is equal to

+∞∑

r=1

∑

σ∈Sr

r∑

m=1

(−1)m−1

mr
d(r,m, σ)

∫

∆r[0,t]

[...[◦dωsσ(1)
, ◦dωsσ(2)

]...], ◦dωsσ(r)
],

where d(r,m, σ) is the number of ways of choosing positive integers

p1, ..., pm with p1 + ... + pm = r satisfying σ(qj + 1) < ... < σ(qj+1),

j = 0, ...,m− 1.

Step 3. We claim now that

r∑

m=1

(−1)m−1

mr
d(r,m, σ) =

(−1)
e(σ)

r2
(
r − 1

e(σ)

) .

Indeed, a straightforward combinatorial argument shows that

d(r,m, σ) =

(
r − e(σ) − 1

m− e(σ) − 1

)
,

so that we need to sum

r∑

m=e(σ)+1

(−1)m−1

mr

(
r − e(σ) − 1

m− e(σ) − 1

)
.
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But let us observe that for n ≥ 0 and k > 0,

n∑

j=0

(−1)
j

k + j

(
n

j

)
=

n∑

j=0

(−1)
j

(
n

j

)∫ 1

0

xj+k−1dx

=

∫ 1

0

(1 − x)
n
xk−1dx

=
(k − 1)!n!

(k + n)!
.

Therefore, by setting k = e(σ) + 1, m = k + j, and n = r − k we obtain

r∑

m=1

(−1)m−1

mr
d(r,m, σ) =

(−1)e(σ)

r2
(
r − 1

e(σ)

) .

Step 4. Putting things together, we get therefore

Zt =

+∞∑

r=1

∑

σ∈Sr

(−1)e(σ)

r2
(
r − 1

e(σ)

)
∫

∆r[0,t]

[...[◦dωsσ(1)
, ◦dωsσ(2)

]...], ◦dωsσ(r)
].

Now, observe that

[◦dωsσ(1)
, [..., [◦dωsσ(r−1)

, ◦dωsσ(r)
]...]

= (−1)r−1[...[◦dωsσ(r)
, ◦dωsσ(r−1)

]...], ◦dωsσ(1)
],

and that if for σ ∈ Sr, σ
∗ denotes the permutation defined by σ∗(k) =

σ(r + 1 − k), then e(σ∗) = r − 1 − e(σ). Therefore, we also have

Zt =

+∞∑

r=1

∑

σ∈Sr

(−1)
e(σ)

r2
(
r − 1

e(σ)

)
∫

∆r[0,t]

[◦dωsσ(1)
, [..., [◦dωsσ(r−1)

, ◦dωsσ(r)
]...].

By expanding out

∑

σ∈Sr

(−1)e(σ)

r2
(
r − 1

e(σ)

)
∫

∆r[0,t]

[◦dωsσ(1)
, [..., [◦dωsσ(r−1)

, ◦dωsσ(r)
]...]
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into

∑

σ∈Sr

(−1)
e(σ)

r2
(
r − 1

e(σ)

)
∑

I=(i1,...,ir)

XI

∫

∆k[0,t]

◦dBσ−1·I ,

we obtain finally the claimed formula. �

Remark 1.5 Observe that the first terms in the Chen-Strichartz formula

are:

(1)

∑

I=(i1)

ΛI(B)tXI =

d∑

k=1

Bi
tXi;

(2)

∑

I=(i1,i2)

ΛI(B)tXI =
1

2

∑

1≤i<j≤d

[Xi, Xj ]

∫ t

0

Bi
s ◦ dBj

s −Bj
s ◦ dBi

s;

it is interesting to note the above Stratonovitch integrals are also Itô

integrals, that is
∫ t

0

Bi
s ◦ dBj

s −Bj
s ◦ dBi

s =

∫ t

0

Bi
sdB

j
s −Bj

sdB
i
s.

Remark 1.6 Actually, the Chen-Strichartz formula holds for the signa-

ture of any semimartingale: this is indeed a pathwise result.

Remark 1.7 The formal development for the action on functions of the

stochastic flow Φ∗
t associated with a stochastic differential equation of the

type (1.3) reads therefore

Φ∗
t = exp




∑

k≥1

∑

I=(i1,...,ik)

ΛI(B)tVI



 .

It is also possible to obtain a formal development for the action of Φt on

smooth tensor fields. Indeed an iteration of the formula given in the Propo-

sition A.6 of Appendix A leads, due to the Lie algebra homomorphism prop-

erty of the Lie derivative, to

Φ∗
t = exp




∑

k≥1

∑

I=(i1,...,ik)

ΛI(B)tLVI



 .
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1.4 Expectation of the signature of a Brownian motion

It is interesting to note that it is possible to derive in a purely algebraic

manner the semigroup Pt associated with the solution of a stochastic dif-

ferential equation driven by Brownian motions .

Definition 1.3 The element of R[[X1, ..., Xd]] defined by

Pt = 1 +

+∞∑

k=1

∑

I=(i1,...ik)

Xi1 ...Xik
E

(∫

∆k[0,t]

◦dBI

)
, t ≥ 0,

is called the expectation of the signature of the Brownian motion (Bt)t≥0.

Proposition 1.3 We have

Pt = exp

(
1

2
t

d∑

i=1

X2
i

)
, t ≥ 0.

Proof. By using proposition (1.2), we get

Pt = 1 +
+∞∑

k=1

∑

I∈{0,1,...,d}k

Xi1 ...Xik
E

(∫

∆k[0,t]

dBI

)
, t ≥ 0,

where:

X0 =
1

2

d∑

i=1

X2
i , and B0

t = t.

In the previous sum, the only terms whose expectation does not vanish are

the terms
∫

∆k[0,t]

dBI

where I is a word which contains only 0. Therefore,

Pt = 1 +
+∞∑

k=1

Xk
0

∫

∆k[0,t]

dt1...dtk.

Since
∫

∆k[0,t]

dt1...dtk =
1

k!

∫

[0,t]k
dt1...dtk =

tk

k!
,
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we get

Pt = 1 +

+∞∑

k=1

tk

k!
Xk

0 = etX0 .

�

Remark 1.8 If we think (S(B)t)t≥0 as the solution of the formal stochas-

tic differential equation

S(B)t = 1 +

d∑

i=1

∫ t

0

S(B)sXi ◦ dBi
s, (1.9)

and Pt as E (S(B)t), then the above formula is rather intuitive. Indeed, by

writing the Itô’s form of (1.9), and by taking the expectation, we obtain the

equation

Pt = 1 +

∫ t

0

Ps

(
1

2

d∑

i=1

X2
i

)
ds,

which directly implies

Pt = exp

(
1

2
t

d∑

i=1

X2
i

)
.

Remark 1.9 In the commutative case, we have

S(B)t = exp

(
d∑

i=1

XiB
i
t

)
,

and the formula for Pt reduces to the well-known Laplace transform formula

E

(
exp

(
d∑

i=1

XiB
i
t

))
= exp

(
1

2
t

d∑

i=1

X2
i

)
.

We stress the fact that the last formula only holds in the commutative case.

Observe that the semigroup property of Pt, that is

Pt+s = PtPs,

could have been directly derived from the identity

S(B)t+s = S(B)t


1 +

+∞∑

k=1

∑

I=(i1,...ik)

Xi1 ...Xik

∫

∆k[t,t+s]

◦dBI


 .
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Indeed, since
∫
∆k[t,t+s] ◦dBI is independent of (Bu)u≤t, we deduce

Pt+s = Pt


1 +

+∞∑

k=1

∑

I=(i1,...ik)

Xi1 ...Xik
E

(∫

∆k[t,t+s]

◦dBI

)
 .

Now observe that, due to the stationarity of the increments of a Brownian

motion,

E

(∫

∆k[t,t+s]

◦dBI

)
= E

(∫

∆k[0,s]

◦dBI

)
,

so that

Pt+s = Pt


1 +

+∞∑

k=1

∑

I=(i1,...ik)

Xi1 ...Xik
E

(∫

∆k[0,s]

◦dBI

)
 = PtPs.

We have already pointed out that the signature is a universal object in

the theory of stochastic flows, so let us see the analytic counterpart of the

purely algebraic formula

1 +

+∞∑

k=1

∑

I=(i1,...ik)

Xi1 ...Xik
E

(∫

∆k[0,t]

◦dBI

)
= exp

(
1

2
t

d∑

i=1

X2
i

)
.

In the first section, we have seen that for the action on smooth functions

of the stochastic flow Φ associated with the stochastic differential equation

Xx0
t = x0 +

d∑

i=1

∫ t

0

Vi(X
x0
s ) ◦ dBi

s,

we had formally

Φ∗
t = Id +

+∞∑

k=1

∑

I=(i1,...ik)

Vi1 ...Vik

∫

∆k[0,t]

◦dBI .

Therefore,

E (Φ∗
t ) = Id +

+∞∑

k=1

∑

I=(i1,...ik)

Vi1 ...Vik
E

(∫

∆k[0,t]

◦dBI

)
= e

1
2 t

P

d
i=1 V 2

i .
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By coming back to the definition of Φ∗
t we deduce that if f : Rn → R is a

smooth function,

E (f(Xx0
t )) =

(
e

1
2 t

P

d
i=1 V 2

i f
)

(x0),

which exactly says that (Xx0
t )t≥0 is a Markov process with generator

e
1
2 t

Pd
i=1 V 2

i . In the same way, by using the formal development of Φt on

smooth tensor fields which reads

Φ∗
t = Id +

+∞∑

k=1

∑

I=(i1,...ik)

LVi1
...LVik

∫

∆k[0,t]

◦dBI ,

where L denotes the Lie derivative, we obtain that if K is a smooth tensor

field on Rn,

E [(Φ∗
tK)(x0)] =

(
e

1
2 t

Pd
i=1 L2

ViK
)

(x0).

Of course, all this is only formal, but should convince the reader of the

relevance of the formal calculus on the signature.

1.5 Expectation of the signature of other processes

As already observed, the notion of signature can be defined for other pro-

cesses than Brownian motions and there is a corresponding notion of ex-

pectation for the signature. Let us for instance mention the example of

the signature of a fractional Brownian motion. A d-dimensional fractional

Brownian motion with Hurst parameter H > 1
2 is a Gaussian process

Bt = (B1
t , ..., B

d
t ), t ≥ 0,

where B1, ..., Bd are d independent centered Gaussian processes with co-

variance function

R (t, s) =
1

2

(
s2H + t2H − |t− s|2H

)
.

It can be shown that such a process admits a continuous version whose

paths are locally p-Hölder for p < H . Therefore, if H > 1
2 , the integrals

∫

∆k[0,t]

dBI



March 24, 2007 0:33 WSPC/Book Trim Size for 9in x 6in source

18 An Introduction to the Geometry of Stochastic Flows

can be understood in the sense of Young’s integration; see [Young (1936)]

and [Zähle (1998)]. We define then the signature of (Bt)t≥0 by

S(B)t = 1 +
+∞∑

k=1

∑

I=(i1,...ik)

Xi1 ...Xik

∫

∆k[0,t]

dBI , t ≥ 0,

and associate with S(B) the family of operators

Pt = 1 +

+∞∑

k=1

∑

I=(i1,...ik)

Xi1 ...Xik
E

(∫

∆k[0,t]

dBI

)
, t ≥ 0.

The increments of (Bt)t≥0 are not independent (they are however station-

ary), and (Pt)t≥0 is therefore not a semigroup. Nevertheless, as shown in
[Baudoin and Coutin (2004)], when t→ 0,

Pt = 1 +
1

2
t2H

(
d∑

i=1

X2
i

)
+ t4H

d∑

i,j,k,l=1

ai,j,k,lXiXjXkXl +O(t6H),

where,

ai,j,k,l =
1

2
δk,lδj,i

[
1

4
− 2Hβ(2H, 2H − 1)

]
+

1

2
δi,kδj,l

2H − 1

4H(4H − 1)

+
H(2H − 1)

8
δj,kδi,l

[
β(2H, 2H − 2) +

1

4H − 1
− 1

2H − 1

]
,

with β(x, y) =
∫ 1

0 t
x−1(1 − t)y−1dt, and δi,j is the Kronecker’s symbol. A

development for Pt which leads to development in small times of expressions

of the type E (f(Xx0
t )), where (Xx0

t )t≥0 denotes the solution of the equation

Xx0
t = x0 +

d∑

i=1

∫ t

0

Vi(X
x0
s )dBi

s, t ≥ 0,

which is understood in Young’s sense (see [Nualart and Rascanu (2002)] for

theorems concerning the existence and the uniqueness for the solution of

such an equation).

Observe that when H → 1
2 , then the above development tends to

Pt = 1 +
1

2
t

(
d∑

i=1

X2
i

)
+

1

8
t2

(
d∑

i=1

X2
i

)2

+O(t3),

which is the development of the Pt corresponding to the Brownian motion.
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Also observe that the fourth order operator

d∑

i,j,k,l=1

ai,j,k,lXiXjXkXl

can not be simply expressed from

d∑

i=1

X2
i .

Such a discussion can obviously be generalized to any stochastic differential

equation driven by Gaussian processes whose paths are more than 1
2 locally

Hölder continuous and this is actually an interesting open question to decide

what is the smallest sub-algebra of R[[X1, ..., Xd]] that contains Pt.

Let us finally mention another type of processes for which the expec-

tation of the signature can be explicitly computed. Let us consider the

process

Zt = Bσt, t ≥ 0,

where (Bt)t≥0 is a d-dimensional standard Brownian motion and σ a non

negative random variable independent of (Bt)t≥0 which satisfies E
(
σk
)
<

+∞, k ≥ 0. In that case, the expectation of the signature of (Zt)t≥0 is

easily seen to be given by

Pt =

+∞∑

k=0

1

2kk!
E
(
σk
)
tk

(
d∑

i=1

X2
i

)k

,

and observe that, like in the Brownian case, the smallest algebra containing

Pt is given by R

[∑d
i=1X

2
i

]
. For instance, by taking for σ an exponential

law with parameter 1, that is

P(σ ∈ dx) = e−x1R≥0
(x),

we get

Pt =
1

1 − 1
2 t
(∑d

i=1X
2
i

) .
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Chapter 2

Stochastic Differential Equations and

Carnot Groups

Let us consider a stochastic differential equation

Xx0
t = x0 +

d∑

i=1

∫ t

0

Vi(X
x0
s ) ◦ dBi

s, t ≥ 0, (2.1)

where x0 ∈ Rn, V1, ..., Vd are C∞ bounded vector fields on Rn and (Bt)t≥0

is a d-dimensional standard Brownian motion. Since (Xx0
t )t≥0 is a strong

solution of (2.1), we know from the general theory of stochastic differential

equations that (Xx0
t )t≥0 is a predictable functional of (Bt)t≥0 (see Appendix

A).

In this chapter, we would like to better understand this pathwise repre-

sentation. For this, the best tool is certainly the Chen-Strichartz formula

which has been proved in the first chapter. Indeed, if we denote (Φt)t≥0

the stochastic flow associated with equation (2.1), then the Chen-Strichartz

formula shows that for the action of Φ on smooth functions

Φ∗
t = exp



∑

k≥1

∑

I=(i1,...,ik)

ΛI(B)tVI


 ,

where

VI = [Vi1 , [Vi2 , ..., [Vik−1
, Vik

]...],

and

ΛI(B)t =
∑

σ∈Sk

(−1)e(σ)

k2

(
k − 1

e(σ)

)
∫

∆k[0,t]

◦dBσ−1·I .

21
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Even though this is only a formal development, it clearly shows how the

dependance betweenB andXx0 is related to the structure of the Lie algebra

L generated by the vector fields Vi’s. If we want to understand more deeply

how the properties of this Lie algebra determine the geometry of Xx0, it

is wiser to begin with the simplest cases. In a way, the most simple Lie

algebras are the nilpotent ones. In that case, that is if L is nilpotent, then

the sum

∑

k≥1

∑

I=(i1,...,ik)

ΛI(B)tVI

is actually finite and we shall show that the solutions of equation (2.1) can

be represented from the lift of the Brownian motion (Bt)t≥0 in a graded

free nilpotent Lie group with dilations. These groups called the free Carnot

groups are introduced and their geometries are discussed.

When the Lie algebra L is not nilpotent, this representation does not

hold anymore but provides a good approximation for Xx0 in small times.

We conclude the chapter with an introduction to the rough paths theory of
[Lyons (1998)], in which Carnot groups also play a fundamental role.

2.1 The commutative case

In this section, we shall assume that the Lie algebra L = Lie(V1, ..., Vd)

is commutative, i.e. that [Vi, Vj ] = 0 for 1 ≤ i, j ≤ d. This is therefore

the simplest possible case: it has been first studied by [Doss (1977)] and
[Süssmann (1978)]. The main theorem is the following:

Theorem 2.1 There exists a smooth map

F : Rn × Rd → Rn

such that, for x0 ∈ Rn, the solution (Xx0
t )t≥0 of the stochastic differential

equation (2.1) can be written

Xx0
t = F (x0, Bt), t ≥ 0.

Proof. For i = 1, ..., d, let us denote by (etVi)t∈R the flow associated with

the ordinary differential equation

dx

dt
= Vi(xt).
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Observe that since the vector fields Vi’s are commuting, these flows are also

commuting (see Appendix B). We set now for (x, y) ∈ Rn × Rd,

F (x, y) =
(
ey1V1 ◦ ... ◦ eydVd

)
(x).

By applying Itô’s formula, we easily see that the process
(
eBd

t Vdx0

)

t≥0
is

solution of the SDE

d
(
eBd

t Vd(x0)
)

= Vd

(
eBd

t Vd(x0)
)
◦ dBd

t .

A new application of Itô’s formula shows now that, since Vd and Vd−1 are

commuting,

d
(
eBd−1

t Vd−1(eBd
t Vdx0)

)
=

Vd−1

(
eBd−1

t Vd−1(eBd
t Vdx0)

)
◦ dBd−1

t + Vd

(
eBd−1

t Vd−1(eBd
t Vdx0)

)
◦ dBd

t .

We deduce hence, by an iterative application of Itô’s formula that the pro-

cess (F (x0, Bt))t≥0 satisfies

dF (x0, Bt) =

d∑

i=1

Vi(F (x0, Bt)) ◦ dBi
t.

Thus, by pathwise uniqueness for the stochastic differential equation (2.1),

we conclude that

Xx0
t = F (x0, Bt), t ≥ 0.

�

Computing the function F which appears in the above theorem is not possi-

ble in all generality. Indeed, the proof has shown that the effective computa-

tion of F is equivalent to the explicit resolution of the d ordinary differential

equations

dxt

dt
= Vi(xt),

which is of course not an easy matter.

There is however a case of particular importance where it is possible

to solve explicitly the stochastic differential equation (2.1): this is the case

n = d = 1. Indeed, in that case, (2.1) can be written

dXt = v(Xt) ◦ dBt,
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which also reads in Itô’s form

dXt =
1

2
v(Xt)v

′(Xt)dt+ v(Xt)dBt.

This equation is solved by

Xt = g(Bt),

where g solves

g′ = v ◦ g.

2.2 Two-step nilpotent SDE’s

In this section we introduce the free 2-step Carnot group over Rd, study

its geometry and show that it is universal in the study of 2-step nilpotent

diffusions. Almost all what follows will be generalized in the next section.

Nevertheless, we believe that the understanding of the geometry of the

free 2-step Carnot group is much more easy to get than the geometry of

general Carnot groups and however contains the most important ideas of

sub-Riemannian geometry. Let d ≥ 2 and denote ASd the space of d × d

skew-symmetric matrices. We consider the group G2(R
d) defined in the

following way

G2(R
d) = (Rd ×ASd,⊛)

where ⊛ is the group law defined by

(α1, ω1) ⊛ (α2, ω2) = (α1 + α2, ω1 + ω2 +
1

2
α1 ∧ α2).

Here we use the following notation; if α1, α2 ∈ Rd, then α1∧α2 denotes the

skew-symmetric matrix
(
αi

1α
j
2 − αj

1α
i
2

)

i,j
. Consider now the vector fields

Di(x) =
∂

∂xi
+

1

2

∑

j<i

xj ∂

∂xj,i
− 1

2

∑

j>i

xj ∂

∂xi,j
, 1 ≤ i ≤ d,

defined on Rd ×ASd. It is easy to check that:

(1) For x ∈ Rd ×ASd,

[Di, Dj ](x) =
∂

∂xi,j
, 1 ≤ i < j ≤ d;
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(2) For x ∈ Rd ×ASd,

[[Di, Dj ], Dk](x) = 0, 1 ≤ i, j, k ≤ d;

(3) The vector fields

(Di, [Dj, Dk])1≤i≤d,1≤j<k≤d

are invariant with respect to the left action of G2(R
d) on itself and form

a basis of the Lie algebra g2(R
d) of G2(R

d).

It follows that G2(R
d) is a d(d+1)

2 -dimensional step-two nilpotent Lie group

whose Lie algebra can be written

g2(R
d) = Rd ⊕ [Rd,Rd].

Notice, moreover, that the scaling

c · (α, ω) = (cα, c2ω) (2.2)

defines an automorphism of the group G2(R
d).

Definition 2.1 The group G2(R
d) is called the free two-step Carnot

group over Rd .

Example 2.1

(1) The Heisenberg group H can be represented as the set of 3×3 matrices:




1 x z

0 1 y

0 0 1



 , x, y, z ∈ R.

The Lie algebra of H is spanned by the matrices

D1 =




0 1 0

0 0 0

0 0 0


 , D2 =




0 0 0

0 0 1

0 0 0


 and D3 =




0 0 1

0 0 0

0 0 0


 ,

for which the following equalities hold

[D1, D2] = D3, [D1, D3] = [D2, D3] = 0.

Thus

h ∼ R2 ⊕ [R,R],



March 24, 2007 0:33 WSPC/Book Trim Size for 9in x 6in source

26 An Introduction to the Geometry of Stochastic Flows

and,

H ∼ G2(R
2).

(2) Let us mention a pathwise point of view on the law of G2(R
2) which has

been pointed to us by N. Victoir. If x : [0,+∞) → R2 is an absolutely

continuous path, then for 0 < t1 < t2 we denote

∆[t1,t2]x =
(
x1

t2 − x1
t1 , x

2
t2 − x2

t1 , S[t1,t2]x
)
,

where S[t1,t2]x is the area swept out by the vector −−−→xt1xt during the time

interval [t1, t2]. Then, it is easily checked that for 0 < t1 < t2 < t3,

∆[t1,t3]x = ∆[t1,t2]x⊛ ∆[t2,t3]x,

where ⊛ is precisely the law of G2(R
2), i.e. for (x1, y1, z1), (x2, y2, z2) ∈

R3,

(x1, y1, z1)⊛(x2, y2, z2) =

(
x1 + x2, y1 + y2, z1 + z2 +

1

2
(x1y2 − x2y1)

)
.

Let now (Bt)t≥0 be the Brownian motion considered in the equation (2.1).

There exists a unique G2(R
d)-valued semimartingale (B∗

t )t≥0 such that

B∗
0 = 0G2(Rd) and

dB∗
t =

d∑

i=1

Di(B
∗
t ) ◦ dBi

s, 0 ≤ t ≤ T.

Definition 2.2 The process (B∗
t )t≥0 is called the lift of the Brownian

motion (Bt)t≥0 in the group G2(R
d).

It is immediate to check that we have

B∗
t =

(
Bt,

1

2

(∫ t

0

Bi
s ◦ dBj

s −Bj
s ◦ dBi

s

)

1≤i,j≤d

)
, t ≥ 0.

It is interesting to note the above Stratonovitch integrals are also Itô inte-

grals, i.e.

∫ t

0

Bi
s ◦ dBj

s −Bj
s ◦ dBi

s =

∫ t

0

Bi
sdB

j
s −Bj

sdB
i
s.

Also observe that we have the following scaling property, for every c > 0,

(B∗
ct)t≥0 =law

(√
c · B∗

t

)
t≥0

.
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The process B∗ can be seen as a diffusion process in Rd ×ASd (sometimes

called the Gaveau diffusion, see [Gaveau (1977)] and [Malliavin (1997)])

whose generator is given by

1

2

d∑

i=1

∂2

∂(xi)2
+

1

2

∑

i<j

(
xi ∂

∂xj
− xj ∂

∂xi

)
∂

∂xi,j
+

1

8

∑

i<j

((xi)2+(xj)2)
∂2

∂(xi,j)2
.

Moreover, as shown by [Gaveau (1977)], the law of B∗ is characterized by

the following generalization of Lévy’s area formula:

Lemma 2.1 Let A be a d× d skew-symmetric matrix. Then, for t > 0,

E

(
ei

R

t

0
(ABs,dBs) | Bt = z

)
= det

(
tA

sin tA

) 1
2

exp

(
I − tA cot tA

2t
z, z

)
.

It is now time to say few words about the natural geometry of G2(R
d).

First, we note that there is a natural scalar product g associated with the

previous operator, precisely we define for (α, ω), (α′, ω′) ∈ g2(R
d),

g ((α, ω), (α′, ω′)) = 〈α, α′〉Rd ,

where 〈, 〉Rd denotes the usual scalar product on Rd. This scalar product,

only defined on g2(R
d), i.e. on the tangent space to G2(R

d) at 0G2(Rd), can

be extended in a usual manner to a left invariant (0, 2)-tensor, still denoted

g, and defined on the whole Lie group G2(R
d). Precisely, for x ∈ G2(R

d),

we define gx on the tangent space to G2(R
d) at x in such a way that for

1 ≤ i, j, k, l ≤ d,

gx(Di(x), Dj(x)) = 0 if i 6= j,

gx(Di(x), Di(x)) = 1,

gx(Di(x), [Dj , Dk](x)) = 0,

gx([Di, Dj ](x), [Dk, Dl](x)) = 0.

Since g is not definite positive, the associated geometry is not Riemannian

but sub-Riemannian. The relevant object for studying this geometry is the

so-called horizontal distribution H which is defined as the smoothly varying

family of vector spaces

Hx = span (D1(x), ..., Dd(x)) , x ∈ G2(R
d).
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An absolutely continuous curve c : [0, 1] → G2(R
d) is called horizontal if

for almost every s ∈ [0, 1] we have c′(s) ∈ Hc(s).

Proposition 2.1 Let c = (α, ω) be an absolutely continuous curve

[0, 1] → G2(R
d). It is a horizontal curve if and only if

ω′(s) =
1

2
α(s) ∧ α′(s).

Proof. The curve c is horizontal if and only if there exist λ1, ..., λd such

that

c′(s) =

d∑

i=1

λi(s)Di(c(s)).

Since

Di(x) =
∂

∂xi
+

1

2

∑

j<i

xj ∂

∂xj,i
− 1

2

∑

j>i

xj ∂

∂xi,j
, 1 ≤ i ≤ d,

we obtain, first, by an identification of the coefficients in front of the ∂
∂xi ’s

λi(s) = α′
i(s).

The identification of the terms in front of the ∂
∂xi,j ’s leads exactly to

ω′(s) =
1

2
α(s) ∧ α′(s).

�

The length of an horizontal curve c with respect to g is defined by

l(c) =

∫ 1

0

√
gc(s)(c′(s), c′(s))ds.

We can now turn to the first version of Chow theorem, whose proof shall

be given later (see Theorem 2.4).

Theorem 2.2 Given two points x and y ∈ G2(R
d), there is at least one

horizontal curve c : [0, 1] → G2(R
d) such that c(0) = x and c(1) = y.

The Carnot-Carathéodory distance between x and y and denoted dg(x, y)

is defined as being the infimum of the lengths of all the horizontal curves

joining x and y. It is easily checked that this distance satisfies dg(c·x, c·y) =

cdg(x, y), for any c > 0, x, y ∈ G2(R
d), where the multiplication by c in the

group corresponds to the scaling defined by the formula (2.2). A horizontal

curve with length dg(x, y) is called a sub-Riemannian geodesic joining x

and y.
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Proposition 2.2 Let c = (α, ω) be a smooth horizontal curve [0, 1] →
G2(R

d). Then, it is a sub-Riemannian geodesic if and only if there exists

a skew-symmetric d× d matrix Λ such that

α′′ = Λα′.

Proof. First, we note that the equation given in the proposition is noth-

ing else than the Euler-Lagrange equation

d

ds

∂L

∂c′
=
∂L

∂c
,

associated with the Lagrangian with constraints

L(c(s), c′(s)) =
1

2
gc(s)(c

′(s), c′(s)) + 2
∑

i<j

Λi,jθ
i,j(c′(s)),

where Λ is an arbitrary skew-symmetric d×d matrix and θi,j = dxi,j is the

one-form on g2(R
d) which vanishes on g2(R

d) excepted on the vector space

spanned by [Di, Dj ]. Indeed, since c is horizontal we can write

c′(s) =

d∑

i=1

α′
i(s)Di(c(s)),

thus

L(c(s), c′(s)) =
1

2

d∑

i=1

(α′
i(s))

2 +
∑

i<j

Λi,j

(
αi(s)α

′
j(s) − αj(s)α

′
i(s)
)
,

and

∂L

∂α′
i

= α′
i(s) −

d∑

j=1

Λi,jαj(s).

Now, to conclude the proof we have to check that all the sub-Riemannian

geodesics are indeed critical points of the constrained Lagrangian that has

been considered. Since the proof of this fact is not obvious and quite

technical, we refer the interested reader to [Golé and Karidi (1995)]. �

Remark 2.1 It can be shown that in G2(R
d), all the sub-Riemannian

geodesics are smooth (see e.g. [Golé and Karidi (1995)]).
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From the previous proposition, we deduce that the sub-Riemannian

geodesics in G2(R
d) are generalized helices, i.e. curves with constant cur-

vature. Precisely, let c = (α, ω) be a sub-Riemannian geodesic. The curve

c is smooth and solves the equation

α′′ = Λα′, (2.3)

for some skew-symmetric d × d matrix Λ. It is now an elementary fact in

linear algebra that we can then write a decomposition

Rd = Ker(Λ) ⊕H1 ⊕ · · ·Hm

where H1,...,Hm are planes (i.e. two-dimensional spaces) such that ΛHi =

Hi. Therefore, a direct quadrature of the equation (2.3) shows that the

projection of c onto any one of these planes is part of a circle, and its

projection on the kernel is a line segment.

Now, since the geodesics of the geometry of G2(R
d) are known, it is

natural to be interested in the shape of balls. We denote for ε > 0, Bg(0, ε)

the open ball with radius ε for the Carnot-Carathéodory metric dg. By

direct but tedious computations, it can be shown that the sphere ∂Bg(0, ε)

is not a smooth sub-manifold of G2(R
d). Precisely, ∂Bg(0, ε) has a singu-

larity in each of the vertical directions [Di, Dj ] = ∂
∂xi,j . For instance in the

Heisenberg group, i.e. in G2(R
2), the unit sphere looks like an apple (see

Fig. 2.1) whose parametric equations are

x(u, v) = cos u sin v−sin u(1−cos v)
v ,

y(u, v) = sin u sin v+cos u(1−cos v)
v ,

z(u, v) = v−sin v
v2 ,

where u ∈ [0, 2π], v ∈ [−2π, 2π]. By letting the parameter v describe R,

we obtain the wave front of the Heisenberg group, whose structure is quite

complicated (see Fig. 2.2 which represents half of the wave front).

For the Euclidean metric of G2(R
d) = Rd×R

d(d−1)
2 , the size of the sphere

Bg(0, ε) in the horizontal directions is approximatively ε and approxima-

tively ε2 in the vertical directions. Precisely, as it will be seen later, if for

ε > 0, we denote

Box(ε) = {(α, ω) ∈ G2(R
d), | αi |≤ ε, | ωj,k |≤ ε2},

there exist positive constants c1 and c2 and ε0 such that for any 0 < ε < ε0,

Box(c1ε) ⊂ Bg(0, ε) ⊂ Box(c2ε).
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Fig. 2.1 The unit Heisenberg sphere.

From this estimation, we deduce immediately that the topology given by

the distance dg is compatible with the natural topology of the Lie group

G2(R
d). We can also deduce that the Hausdorff dimension of the metric

space (G2(R
d), dg) is dimV1 + 2 dimV2 = d2 which is quite striking since

the dimension of G2(R
d) as a topological manifold is only equal to d(d+1)

2 .

For further details on these properties of the metric space (G2(R
d), dg), we

refer to the next section.

We now come back to the study of the stochastic differential equation

Xx0
t = x0 +

d∑

i=1

∫ t

0

Vi(X
x0
s ) ◦ dBi

s, t ≥ 0, (2.4)

where x0 ∈ Rn, V1, ..., Vd are C∞ bounded vector fields on Rn and (Bt)t≥0

is a d-dimensional standard Brownian motion and show the universality of

the group G2(R
d) in the study of two-step nilpotent diffusions.
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Fig. 2.2 The wave front in the Heisenberg group.

Theorem 2.3 Assume that the Lie algebra L = Lie(V1, ..., Vd) is two-step

nilpotent. There exists a smooth map

F : Rn × G2(R
d) → Rn

such that, for x0 ∈ Rn, the solution (Xx0
t )t≥0 of the stochastic differential

equation (2.4) can be written

Xx0
t = F (x0, B

∗
t ),

where (B∗
t )t≥0 is the lift of (Bt)t≥0 in the group G2(R

d).

Proof. Let us consider the function F : Rn × G2(R
d) defined for x ∈ Rn

and g = (α, ω) ∈ G2(R
d) by

F (x, g) = exp




d∑

i=1

αiVi +
1

2

∑

1≤i<j≤d

[Vi, Vj ]ω
i,j



 (x).

Since the Stratonovitch integration satisfies the usual change of variable

formula, an iteration of Itô’s formula shows, by using Chen’s development
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theorem, that the process (F (x0, B
∗
t ))t≥0 solves the equation (2.4). We

conclude by the pathwise uniqueness property. �

The conclusion of this section is hence the following: The natural geometry

associated with a 2-step nilpotent stochastic differential equation is the

sub-Riemannian geometry of a quotient of the free 2-step Carnot group

G2(R
d). The next step for us is now to generalize the previous study to

any nilpotent stochastic differential equation.

2.3 N-step nilpotent SDE’s

We introduce now the notion of Carnot group. Carnot groups are to sub-

Riemannian geometry what Euclidean spaces are to Riemannian geometry.

Numerous papers and several books are devoted to the analysis of these

groups (see e.g. [Belläiche (1996)], [Folland and Stein (1982)], [Goodman

(1976)], [Gromov (1996)]).

Definition 2.3 A Carnot group of step (or depth) N is a simply con-

nected Lie group G whose Lie algebra can be written

V1 ⊕ ...⊕ VN ,

where

[Vi,Vj ] = Vi+j

and

Vs = 0, for s > N.

Example 2.2 The group
(
Rd,+

)
is the only commutative Carnot group.

Example 2.3 The group G2(R
d) considered in the previous section is a

Carnot group of depth 2.

Example 2.4 Consider the set Hn = R2n × R endowed with the group

law

(x, α) ⋆ (y, β) =

(
x+ y, α+ β +

1

2
ω(x, y)

)
,

where ω is the standard symplectic form on R2n, that is

ω(x, y) = xt

(
0 −In

In 0

)
y.
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Observe that H1 is the Heisenberg group. On hn the Lie bracket is given

by

[(x, α), (y, β)] = (0, ω(x, y)) ,

and it is easily seen that

hn = V1 ⊕ V2,

where V1 = R2n × {0} and V2 = {0} × R. Therefore Hn is a Carnot group

of depth 2.

We consider throughout this section a Lie group G which satisfies the hy-

pothesis of the above definition. Notice that the vector space V1, which is

called the basis of G, Lie generates g, where g denotes the Lie algebra of

G. Since G is step N nilpotent and simply connected, the exponential map

is a diffeomorphism and the Baker-Campbell-Hausdorff formula therefore

completely characterizes the group law of G because for U, V ∈ g,

expU expV = exp (P (U, V ))

for some universal Lie polynomial P whose first terms are given by

P (U, V ) = U + V + 1
2 [U, V ] + 1

12 [[U, V ], V ] − 1
12 [[U, V ], U ]

− 1
48 [V, [U, [U, V ]]] − 1

48 [U, [V, [U, V ]]] + · · · .

(see Appendix B for an explicit formula). On g we can consider the family

of linear operators δt : g → g, t ≥ 0 which act by scalar multiplication ti

on Vi. These operators are Lie algebra automorphisms due to the grading.

The maps δt induce Lie group automorphisms ∆t : G → G which are called

the canonical dilations of G. Let us now take a basis U1, ..., Ud of the vector

space V1. The vectors Ui’s can be seen as left invariant vector fields on G

so that we can consider the following stochastic differential equation on G:

dB̃t =

d∑

i=1

∫ t

0

Ui(B̃s) ◦ dBi
s, t ≥ 0, (2.5)

which is easily seen to have a unique (strong) solution (B̃t)t≥0 associated

with the initial condition B̃0 = 0G.

Definition 2.4 The process (B̃t)t≥0 is called the lift of the Brownian

motion (Bt)t≥0 in the group G with respect to the basis (U1, ..., Ud).
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Remark 2.2 Notice that (B̃t)t≥0 is a Markov process with generator
1
2

∑d
i=1 U

2
i . This second-order differential operator is, by construction, left-

invariant and hypoelliptic.

Proposition 2.3 We have

B̃t = exp




N∑

k=1

∑

I=(i1,...,ik)

ΛI(B)tUI


 , t ≥ 0,

where:

ΛI(B)t =
∑

σ∈Sk

(−1)
e(σ)

k2

(
k − 1

e(σ)

)
∫

∆k[0,t]

◦dBσ−1·I .

Proof. This is obviously a straightforward consequence of the Chen-

Strichartz development Theorem 1.1, whose proof is given in Chapter 1.

Nevertheless, since the general proof of Theorem 1.1 is purely algebraic we

believe that it is interesting to hint a more pathwise oriented proof. We

follow closely [Strichartz (1987)] and proceed in two steps. In the first step

we show that if ω : R≥0 → Rd is an absolutely continuous path, then the

solution of the ordinary differential equation

dxt =

d∑

i=1

Ui(xt)dω
i
t

is given by

xt = exp




N∑

k=1

∑

I={i1,...,ik}
ΛI(ω)tUI


 ,

where

ΛI(ω)t =
∑

σ∈Sk

(−1)e(σ)

k2

(
k − 1

e(σ)

)
∫

∆k[0,t]

dωσ−1·I .

In the second step, we observe that Stratonovitch differentiation follows the

same rules as the differentiation of absolutely continuous paths.

Step 1. Let ω : R≥0 → Rd be an absolutely continuous path. Let t > 0

and n ∈ N∗. We consider a regular subdivision 0 = t0 < t1 < ... < tn = t
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of the time interval [0, t]. The linear continuous interpolation of the path

(ωs)0≤s≤t is given by:

ω̃k
s = n(ωk

ti+1
− ωk

ti
)(s− ti) + ωk

ti
,

where s ∈ [ti, ti+1), k = 1, ..., d. If (x̃s)0≤s≤t denotes the solution of the

ordinary differential equation

dx̃s =

d∑

k=1

Uk(x̃s)dω̃
k
s , 0 ≤ s ≤ t,

it is easily seen that

x̃t = exp

(
d∑

k=1

(ωk
t − ωk

tn−1
)Uk

)
· · · exp

(
d∑

k=1

(ωk
t1 − ωk

t0)Uk

)
.

Now we use the Baker-Campbell-Hausdorff formula (see Appendix B) to

write the previous product of exponentials under the form

x̃t = exp




N∑

k=1

∑

I={i1,...,ik}
Λn

I (ω)tUI


 ,

and similar arguments, using furthermore the convergence of Riemann

sums, to those given in the proof of the Chen-Strichartz formula show that

Λn
I (ω)t →n→+∞ ΛI(ω)t.

Since

x̃t →n→+∞ xt,

we conclude that

xt = exp




N∑

k=1

∑

I={i1,...,ik}
ΛI(ω)tUI



 .

Step 2. Since the Itô’s formula with Stratonovitch integrals has the same

form as the usual change of variable formula, an iteration of Itô’s formula

shows the expected result. �

Observe that, due to the elementary fact

(ΛI(B)ct)t≥0 =law
(
c

|I|
2 ΛI(B)t

)

t≥0
,
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we have the following scaling property, for every c > 0
(
B̃ct

)

t≥0
=law

(
∆√

cB̃t

)

t≥0
.

This scaling property leads directly to the following value at 0G of the

density p̃t of B̃t with respect to any Haar measure of G:

p̃t (0G) =
C

t
D
2

, t > 0,

where C > 0 and D =
∑N

i=1 i dimVi. Moreover, from [Alexopoulos and

Lohoué (2004)], for p̃t, t > 0, the following estimates hold:

Proposition 2.4 For (i1, ..., ip) ∈ {1, ..., d}p, g ∈ G, q ≥ 0, t > 0,

| Ui1 · · ·Uip
∂q

t p̃t(g) |≤
Ap,q

t
D+p+2q

2

exp

(
−dg(0G, g)

2

Bp,qt

)
,

where Ap,q and Bp,q are non-negative constants.

We now turn to the geometry of G. The Lie algebra g can be identified

with the set of left-invariant vector fields on G. From this identification

and from the decomposition

g = V1 ⊕ ...⊕ VN ,

we deduce a decomposition of the tangent space TxG to G at x ∈ G:

TxG = V1(x) ⊕ ...⊕ VN (x),

where Vi(x) is the fiber at x of the left-invariant differential system spanned

by Vi. This decomposition endows naturally G with a left-invariant (0, 2)-

tensor g. Precisely, for x ∈ G, we define gx as being the scalar product on

TxG such that:

(1) The vectors U1(x), ..., Ud(x) form an orthonormal basis;

(2) gx |Vi(x)×Vj(x)= 0, if i or j is different from 1.

An absolutely continuous curve c : [0, 1] → G is called horizontal if for

almost every s ∈ [0, 1] we have c′(s) ∈ V1(c(s)). The length of a horizontal

curve c with respect to g is defined by

l(c) =

∫ 1

0

√
gc(s)(c′(s), c′(s))ds.

We can now state the basic result on the geometry of Carnot groups: The

Chow’s theorem.
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Theorem 2.4 Given two points x and y ∈ G, there is at least one hor-

izontal absolutely continuous curve c : [0, 1] → G such that c(0) = x and

c(1) = y.

Proof. Let us denote G the subgroup of diffeomorphisms G → G gener-

ated by the one-parameter subgroups corresponding to U1, ..., Ud. The Lie

algebra of G can be identified with the Lie algebra generated by U1, ..., Ud,

i.e. g. We deduce that G can be identified with G itself, so that it acts tran-

sitively on G. It means that for every x ∈ G, the map G → G, g → g(x)

is surjective. Thus, every two points in G can be joined by a piecewise

smooth horizontal curve where each piece is a segment of an integral curve

of one of the vector fields Ui. �

Remark 2.3 In the above proof, the horizontal curve constructed to join

two points is not smooth. Nevertheless, it can be shown that it is always

possible to connect two points with a smooth horizontal curve (see [Gromov

(1996)] pp. 120).

The Carnot-Carathéodory distance between x and y and denoted dg(x, y) is

defined as being the infimum of the lengths of all the horizontal curves join-

ing x and y. It is easily checked that this distance satisfies dg(∆cx,∆cy) =

cdg(x, y), for every c > 0, x, y ∈ G.

Remark 2.4 The distance dg depends on the choice of a basis for V1.

Nevertheless, all the Carnot-Carathéodory distances that can be constructed

are bi-Lipschitz equivalent.

A horizontal curve with length dg(x, y) is called a sub-Riemannian geodesic

joining x and y. The topology of the metric space (G, dg) is really of interest.

The basic tool to investigate this topology is the so-called ball-box theorem.

Denote for ε > 0,

Box(ε) = {g ∈ g, ‖ gi ‖i≤ εi, 1 ≤ i ≤ N},

where gi denotes the projection of g on Vi and ‖ gi ‖i the norm of gi with

respect to any norm of Vi (all the norms on Vi are equivalent). We have

then the following so-called ball-box theorem.

Proposition 2.5 There exist positive constants c1 and c2 and ε0 such

that for any 0 < ε < ε0,

exp (Box(c1ε)) ⊂ Bg(0, ε) ⊂ exp (Box(c2ε)) ,
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where Bg(0, ε) denotes the open ball with radius ε in the metric space

(G, dg).

Remark 2.5 Let us mention that the previous proposition is actually

a consequence of the equivalence of all the homogeneous norms on G. A

homogeneous norm on G is a continuous function ‖ · ‖: G → [0,+∞),

smooth away from the origin, such that:

(1) ‖ ∆cx ‖= c ‖ x ‖, c > 0, x ∈ G;

(2) ‖ x−1 ‖=‖ x ‖, x ∈ G;

(3) ‖ x ‖= 0 if and only if x = 0G.

For analytical questions in Carnot groups (estimations,...) it is often more

convenient to work with a given homogeneous norm rather than with the

Carnot-Carathéodory distance itself.

We have important consequences of the ball-box theorem. First, the topol-

ogy given by the distance dg is compatible with the natural topology of the

Lie group G. Secondly, we can compute the Hausdorff dimension of the

metric space (G, dg).

To make what follows clear, let us recall some facts about Hausdorff

measure and Hausdorff dimension (see e.g. [Falconer (1986)] for a detailed

account of this material). Let (M, d) be a metric space, and let Ω be an

open subset of M. Consider an open cover U = {Uα} of Ω and set for s > 0

µs(Ω,U) =
∑

α

(diam(Uα))
s
.

This quantity (possibly infinite) is called the approximate s-dimensional

Hausdorff measure. We will use the notation | U |< ǫ to mean that each

Uα has diameter less than ǫ. The ǫ-approximate s-dimensional measure of

Ω is the number

µs
ǫ(Ω) = inf{µs(Ω,U), | U |< ǫ}.

Finally, set

µs(Ω) = lim
ǫ→0

µs
ǫ(Ω).

This quantity is called the s-dimensional Hausdorff measure of Ω.

Proposition 2.6 There is a unique value D, called the Hausdorff dimen-

sion of the open set Ω, with the property that µs(Ω) = +∞ for all s < D

and µs(Ω) = 0 for all s > D.
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The metric space (M, d) is said to have an Hausdorff dimension equal to D,

if any open set of M has an Hausdorff dimension equal to D.

Proposition 2.7 The Hausdorff dimension of the metric space (G, dg)

is equal to

D =

N∑

j=1

j dimVj .

Proof. We shall show that the unit ball Bg(0, 1) has Hausdorff dimension

D =
∑N

j=1 j dimVj . We know that, due to the dilations, the volume of a

ball Bg(0, ε) is CεD. Consider now a maximal filling of Bg(0, 1) with balls

of radius ε. An upper bound for the number of balls N(ε) in this filling is

N(ε) ≤ 1

εD
.

Now, the set of concentric balls of radius 2ε constructed from this filling

covers Bg(0, 1). Each of these balls has diameter smaller than 4ε, thus the

Hausdorff s-dimensional measure of Bg(0, 1) is smaller than

lim
ε→0

N(ε)s,

which is 0 if s > D. Therefore the Hausdorff dimension is smaller than D.

Conversely, given any covering of Bg(0, 1) by sets of diameter ≤ ε, there

is an associated covering with balls of the same diameter. The numberM(ε)

of these balls has the lower bound:

M(ε) ≥ 1

εD
.

We deduce that for every s > 0,

∑

cover

εs ≥ εs

εD
= εs−D,

which shows that if s < D then the Hausdorff s-dimensional measure of

Bg(0, 1) is +∞. Therefore the Hausdorff dimension is greater than D �

Remark 2.6 Observe, and this is typical in sub-Riemannian geometry,

that the Hausdorff dimension of G is therefore strictly greater than the

topological dimension.

Carnot groups have their own concept of differentiation. In order to present

this concept introduced in [Pansu (1989)], we first have to define a concept

of linear maps between two Carnot groups.
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Let G1 and G2 be two Carnot groups with Lie algebras g1 and g2. A

Lie group morphism φ : G1 → G2 is said to be a Carnot group morphism

if for any t ≥ 0, g ∈ G1,

φ(∆G1
t g) = ∆G2

t φ(g),

where ∆G1 (resp. ∆G2) denote the canonical dilations on G1 (resp. G2). In

the same way, a Lie algebra morphism α : g1 → g2 is said to be a Carnot

algebra morphism if for any t ≥ 0, x ∈ g1,

α(δg1

t x) = δg2

t α(x),

where δG1 (resp. δG2) denote the canonical dilations on g1 (resp. g2).

Observe that if φ is a Carnot group morphism, then the derivative dφ is a

Carnot algebra morphism.

Let now F : G1 → G2 be a map. When it exists, the Pansu’s derivative

dPF , is defined by

dPF (g)(h) = lim
t→0

(
∆G2

t

)−1 (
F (g)−1F

(
g∆G1

t h
))

, g, h ∈ G1.

and dPF (g) is a Carnot group morphism.

In this setting, Pansu has proved a deep generalization of the classical

Rademacher’s theorem which asserts that a Lipschitz map between Eu-

clidean spaces is almost everywhere differentiable. Indeed, any Lipschitz

map (with respect to the Carnot-Carathéodory distances of G1 and G2) is

almost everywhere Pansu differentiable. An important consequence of this

is that can be no bi-Lipschitz map between Carnot groups that are not

isomorphic as groups.

We conclude now our presentation of the Carnot groups with the free

Carnot groups. The Carnot group G is said to be free if g is isomorphic to

the nilpotent free Lie algebra with d generators. In that case, dimVj is the

number of Hall words of length j in the free algebra with d generators (see

Appendix B). We thus have, according to [Bourbaki (1972)] or [Reutenauer

(1993)] pp.96:

dimVj =
1

j

∑

i|j
µ(i)d

j

i , j ≤ N,

where µ is the Möbius function. We easily deduce from this that when

N → +∞,

dim g ∼ dN

N
.
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An important algebraic point is that there are many algebraically non iso-

morphic Carnot groups having the same dimension (even uncountably many

for n ≥ 6), but up to an isomorphism there is one and only one free Carnot

with a given depth and a given dimension for the basis. Actually, as in the

theory of vector spaces, we can reduce the study of the free Carnot groups

to standard numerical models. Let us denote m = dim G. Choose now a

Hall family and consider the Rm-valued semimartingale (B∗
t )t≥0 obtained

by writing the components of (ln(B̃t))t≥0 in the corresponding Hall basis

of g. It is easily seen that (B∗
t )t≥0 solves a stochastic differential equation

that can be written

B∗
t =

d∑

i=1

∫ t

0

Di(B
∗
s ) ◦ dBi

s,

where the Di’s are polynomial vector fields on Rm (for an explicit form of

the Di’s, which depend of the choice of the Hall basis, we refer to [Ger-

shkovich and Vershik (1994)] pp.27) . With these notations, we have the

following proposition which results of our very construction.

Proposition 2.8 On Rm, there exists a unique group law ⊛ which makes

the vector fields D1, ..., Dd left invariant. This group law is, unimodular1,

polynomial of degree N and we have moreover

(Rm,⊛) ∼ G.

The group (Rm,⊛) is called the free Carnot group of step N over Rd. It shall

be denoted GN (Rd) and its Lie algebra gN(Rd). The process (B∗
t )t≥0 shall

be called the lift of (Bt)t≥0 in GN(Rd) with respect to the basis (D1, ..., Dd).

Remark 2.7 The important point with gN (Rd) is that this is not an

abstract Lie algebra. This is a Lie algebra of vector fields defined on Rm.

Remark 2.8 By construction of
(
GN (Rd),⊛

)
the exponential map is

simply the identity.

The universality of GN (Rd) is the following.

Proposition 2.9 Let G be any Carnot group. There exists a Carnot

group surjective morphism π : GN(Rd) → G, where d is the dimension of

the basis of G and N its depth.

1A group law on Rm is said to be unimodular if the translations let the Lebesgue

measure invariant.
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Proof. Let U1, ..., Ud be a basis of the basis of G. Since GN(Rd) is free,

there exists a unique Lie algebra surjective morphism dπ : gN (Rd) → g

such that dπ(Di) = Ui, i = 1, ..., d. We can now define a surjective Carnot

group morphism π : GN (Rd) → G by π(eg) = edπ(g), g ∈ gN(Rd). Observe

that it defines π in a unique way because in Carnot groups the exponential

map is a diffeomorphism. �

Notice that GN(Rd) is, by construction, endowed with the basis of vec-

tor fields (D1, ..., Dd). These vector fields agree at the origin with(
∂

∂x1
, · · · , ∂

∂xd

)
. To make our approach essentially frame independent, it is

important to relate the horizontal lifts of the same Brownian motion with

respect to two different basis.

Proposition 2.10 Let ϕ : Rd → Rd be a vector space isomorphism. Let

us denote B̂∗ the horizontal lift of B in the group GN (Rd) with respect

to the basis (ϕ(D1), ..., ϕ(Dd)). Then there exists a unique Carnot group

isomorphism Tϕ : GN(Rd) → GN (Rd), such that for every t ≥ 0:

B̂∗
t = Tϕ(B∗

t ).

Proof. Since gN (Rd) is free, ϕ can be extended in a unique way in

a Lie algebra isomorphism gN (Rd) → gN (Rd). Notice that this exten-

sion commutes with the automorphisms δc, c > 0. Now, since GN (Rd)

is simply connected and nilpotent, we can define a group automorphism

Tϕ : GN(Rd) → GN (Rd) by the property

Tϕ(expx) = exp(ϕ(x)), x ∈ gN (Rd).

It is then easily checked that for every t ≥ 0:

B̂∗
t = Tϕ(B∗

t ).

and moreover that Tϕ commutes with the dilations ∆c, c > 0. �

The maps Tϕ give the formulas for a change of basis in the theory of free

Carnot groups. Notice that without the freeness assumption, Tϕ may fail

to exist.

Remark 2.9 Notice that the map Aut
(
Rd
)
→ Aut

(
GN (Rd)

)
, ϕ→ Tϕ,

is a group morphism.

Finally, we now come back the study of the stochastic differential equation

(2.1) and assume that the Lie algebra L = Lie(V1, ..., Vd) is nilpotent of
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depth N , i.e. every commutator constructed from the Vi’s with length

greater than N is 0.

Theorem 2.5 There exists a smooth map

F : Rn × GN(Rd) → Rn

such that, for x0 ∈ Rn, the solution (Xx0
t )t≥0 of the stochastic differential

equation (2.1) can be written

Xx0
t = F (x0, B

∗
t ),

where (B∗
t )t≥0 is the lift of (Bt)t≥0 in the group GN(Rd).

Proof. This is a straightforward extension of Theorem 2.3. Indeed, as be-

fore, we notice that the Stratonovitch integration satisfies the usual change

of variable formula, so that an iteration of Itô’s formula shows, that the

process

exp




N∑

k=1

∑

I=(i1,...,ik)

ΛI(B)tVI




 (x0),

solves the equation (2.1). We deduce hence by pathwise uniqueness prop-

erty that

Xx0
t =



exp




N∑

k=1

∑

I=(i1,...,ik)

ΛI(B)tVI







 (x0).

The definition of GN (Rd) shows that we can therefore write

Xx0
t = F (x0, B

∗
t ).

�

Remark 2.10 Observe that this theorem implies the following inclusion

of filtrations: for t > 0,

σ(Xx0
t ) ⊂ σ (ΛI(B)t, | I |≤ N) ,

where σ(Xx0
t ) denotes the smallest σ-algebra containing Xx0

t , and

σ (ΛI(B)t, | I |≤ N) denotes the smallest σ-algebra containing all the

functionals ΛI(B)t with I, word of length smaller than N .

The above theorem shows the universal property of GN (Rd) in theory of

nilpotent stochastic flows. Let us mention its straightforward counterpart in
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the theory of second order hypoelliptic operators (this property is implicitly

pointed out in the seminal work [Rotschild and Stein (1976)]).

Proposition 2.11 Let

L =

d∑

i=1

V 2
i

be a second order differential operator on Rn. Assume that the Lie algebra

L = Lie (V1, ..., Vd) which is generated by the vector fields Vi’s admits a

stratification

E1 ⊕ · · · ⊕ EN ,

with E1 = span (V1, ..., Vd), [E1, Ei] = Ei+1 and [E1, EN ] = 0. Then, there

exists a submersion map π : Rm → Rn, with m = dim GN(Rd) such that

for every smooth f : Rn → R,

∆GN (Rd) (f ◦ π) = (Lf) ◦ π,

where ∆GN (Rd) =
∑

i=1D
2
i , is the canonical sublaplacian on GN (Rd).

2.4 Pathwise approximation of solutions of SDEs

We now come back to the general case where the Lie algebra L =

Lie (V1, ..., Vd) is not nilpotent anymore. In that case it is, of course, not

possible in full generality to represent (Xx0
t )t≥0 in a deterministic way from

the lift of the driving Brownian motion (Bt)t≥0 in a finite dimensional Lie

group. Nevertheless, the following result which is a consequence of a re-

sult due to [Castell (1993)] (see also [Ben Arous (1989b)]) shows that it is

still possible to provide good pathwise approximations with lifts in the free

Carnot groups.

Theorem 2.6 Let N ≥ 1. There exists a smooth map

F : Rn × GN(Rd) → Rn

such that, for x0 ∈ Rn, the solution (Xx0
t )t≥0 of the SDE (2.1) can be

written

Xx0
t = F (x0, B

∗
t ) + t

N+1
2 RN (t),

where:
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(1) (B∗
t )t≥0 is the lift of (Bt)t≥0 in the group GN (Rd);

(2) The remainder term RN(t) is bounded in probability when t→ 0.

Proof. Let N ≥ 1, and denote πj : Rn → R, j = 1, ..., n, the canonical

projections defined by πj(x) = xj . By using iterations of Itô’s formula and

the scaling property of Brownian motion, we get


exp




N∑

k=1

∑

I=(i1,...,ik)

ΛI(B)tVI



 πj



 (x0)

=πj(x0) +

N∑

k=1

∑

I=(i1,...ik)

(Vi1 ...Vik
πj)(x0)

∫

∆k[0,t]

◦dBI + t
N+1

2 R̃
j
N (t)

=πj(X
x0
t ) + t

N+1
2 R̂

j
N (t),

where the remainder terms R̃
j
N and R̂

j
N are bounded in probability when

t→ 0. �

Remark 2.11 It is possible to show that more precisely, ∃ α, c > 0 such

that ∀A > c,

lim
t→0

P

(
sup

0≤s≤t
s

N+1
2 | RN(s) |≥ At

N+1
2

)
≤ exp

(
−A

α

c

)
.

For further details, we refer to [Castell (1993)].

2.5 An introduction to rough paths theory

As already pointed out, in general, the solution of the stochastic differential

equation

Xx0
t = x0 +

d∑

i=1

∫ t

0

Vi(X
x0
s ) ◦ dBi

s, 0 ≤ t ≤ T,

is not a continuous function of (Bt)0≤t≤T for the topology of uniform con-

vergence. For instance, it is easily seen that the Levy area functional

(∫ t

0

B1
sdB

2
s −B2

sdB
1
s

)

0≤t≤T

is not continuous with respect to
(
B1

t , B
2
t

)
0≤t≤T

(cf. [Watanabe (1984)]).

Observe however, that it is a direct consequence of Section 2.3. that Xx0
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is continuous with respect to B as soon as the vector fields Vi’s commute.

This problem of the continuity of the Itô map

B → X,

is solved in the setting of the rough paths theory which has recently been

developed in [Lyons (1998)] (see also the survey [Lejay (2004)] and the book
[Lyons and Qian (2002)]). Following N. Victoir, we believe that the free

Carnot groups are a good framework for the rough paths theory. For p ≥ 1,

let us denote ΩpGN (Rd) the closure of the set of absolutely continuous

horizontal paths x∗ : [0, T ] → GN (Rd) with respect to the distance in

p-variation which is given by

δp(x
∗, y∗) = sup

π

(
n−1∑

k=1

dN

(
y∗ti

(x∗ti
)−1, y∗ti+1

(x∗ti+1
)−1
)p
) 1

p

,

where the supremum is taken over all the subdivisions

π = {0 ≤ t1 ≤ · · · ≤ tn ≤ T }

and where dN denotes the Carnot-Carathéodory distance on the group

GN (Rd). Consider now the map I which associates with an absolutely

continuous path x : [0, T ] → Rd the absolutely continuous path y : [0, T ] →
Rd that solves the ordinary differential equation

yt =

d∑

i=1

∫ t

0

Vi(ys)dx
i
s.

It is clear that there exists a unique map I∗ from the set of absolutely

continuous horizontal paths [0, T ] → GN(Rd) onto the set of absolutely

continuous horizontal paths [0, T ] → GN(Rn) which makes the following

diagram commutative

I∗

x∗ −→ y∗

↑ ↑
x −→ y

I

.

The fundamental theorem of Lyons is the following:

Theorem 2.7 If N ≥ [p], then in the topology of p-variation, there exists

a continuous extension of I∗ from ΩpGN(Rd) onto ΩpGN(Rn).



March 24, 2007 0:33 WSPC/Book Trim Size for 9in x 6in source

48 An Introduction to the Geometry of Stochastic Flows

One of the important consequences of this theorem, is that it enables to

define the notion of solution for ordinary differential equations which are

driven by paths x whose regularity is only 1
p -Hölder. From Lyons theorem,

to do so, we just have to find y ∈ ΩpGN (Rd) which satisfies πy = x, where

π is the canonical projection GN(Rd) → Rd (finding such a lift, which is

not unique in general, is always possible from [Lyons and Victoir (2004)]).

In this direction let us mention the work [Coutin and Qian (2002)] who

defined a notion of solution for stochastic differential equations driven by

a fractional Brownian motion with Hurst parameter greater than 1
4 .

Observe that if p < 2, the Lyons fundamental theorem reduces to the

classical theory of ordinary differential equations where the integrals are

understood in Young’s sense. The case p ∈ (2, 3) is of particular impor-

tance since it covers the theory of stochastic differential equations driven

by Brownian paths (a Brownian path is almost surely 1
2 − ε Hölder con-

tinuous, ε > 0). This point of view on stochastic differential equations is

for instance used in [Friz and Victoir (2003)] and [Ledoux et al. (2002), ]

to obtain new and simplified proofs of Stroock-Varadhan support theorem

and of the Freidlin-Wentzell theory.
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Chapter 3

Hypoelliptic Flows

Chapter 1 has shown that, thanks to the Chen-Strichartz development the

Itô’s map

I : C
(
[0, T ],Rd

)
→ C ([0, T ],Rn) , B → X,

established by the stochastic differential equation

Xx0
t = x0 +

d∑

i=1

∫ t

0

Vi(X
x0
s ) ◦ dBi

s,

could be formally factorized in the following manner

I = F ◦H.

The map

H : C
(
[0, T ],Rd

)
→ C ([0, T ], exp (gd,∞)) ,

is an horizontal lift in exp (gd,∞) where gd,∞ is the free Lie algebra with d

generators. And F is simply a map exp (gd,∞) → Rn. In Chapter 2 this

factorization was made totally rigorous in the case where the vector fields

Vi’s generate a nilpotent Lie algebra. In this chapter we now go one step

further by studying the case where the Vi’s do not generate a nilpotent Lie

algebra anymore but satisfy the so-called strong Hörmander’s condition.

In that case, it shall be shown that the Gromov’s notion of tangent space

can be used to approximate locally the geometry of the Itô’s map by the

geometry of a Carnot group.

We start the chapter with the probabilistic proof of Hörmander’s theo-

rem. This proof is based on a stochastic calculus of variations that has been

developed by Paul Malliavin (cf. [Malliavin (1978)]). The idea of the proof

49
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is to show that the Itô’s map I is differentiable in a weak sense and then to

show that, under Hörmander’s conditions, the derivative is non degenerate.

Then, we introduce the basic background of differential geometry that

is needed to study locally the stochastic flow associated with a hypoellip-

tic differential system. This local study of the flow is used to derive the

behaviour in small times of a hypoelliptic kernel on the diagonal.

After, we provide a large class of examples of hypoelliptic operators

which arise naturally in a manifold context. These are the horizontal Lapla-

cians on principal bundles, whose hypoellipticity is related to non vanishing

curvature conditions. The case of the horizontal diffusion over a Rieman-

nian manifold is investigated in details.

The local behaviour of the hypoelliptic heat kernel on the diagonal is

then used to get informations on the spectrum of hypoelliptic operators

defined on compact manifolds.

Finally, we conclude the chapter by the study of stochastic flows asso-

ciated with stochastic differential equations driven by loops.

3.1 Hypoelliptic operators and Hörmander’s theorem

Consider a stochastic differential equation

Xx0
t = x0 +

d∑

i=1

∫ t

0

Vi(X
x0
s ) ◦ dBi

s, t ≥ 0, (3.1)

where x0 ∈ Rn, V1, ..., Vd are C∞ bounded vector fields on Rn and (Bt)t≥0

is a d-dimensional standard Brownian motion.

Let us first recall (see Appendix A) that for every x0 ∈ Rn and every

smooth function f : Rn → R which is compactly supported,

E (f(Xx0
t )) =

(
etLf

)
(x0), (3.2)

where

L =

d∑

i=1

V 2
i .

In this section we shall be interested in the existence of smooth densities for

the random variables Xx0
t , t > 0, x0 ∈ Rn. According to formula (3.2), this

question is therefore equivalent to the question of the existence of a smooth

transition kernel with respect to the Lebesgue measure for the operators
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etL. Let us recall the following definition which comes from functional

analysis.

Definition 3.1 A differential operator G defined on an open set O ⊂ Rn

is called hypoelliptic if, whenever u is a distribution on O, u is a smooth

function on any open set O′ ⊂ O on which Gu is smooth.

It is possible to show that the existence of a smooth transition kernel with

respect to the Lebesgue measure for etL is equivalent to the hypoellipticity

of L. Therefore, our initial question about the existence of smooth densities

for the random variables Xx0
t , t > 0, x0 ∈ Rn is reduced to the study of

the hypoellipticity of L.

Let us denote by L the Lie algebra generated by the vector fields Vi’s

and for p ≥ 2, by Lp the Lie subalgebra inductively defined by

Lp = {[X,Y ], X ∈ Lp−1, Y ∈ L}.

Moreover if a is a subset of L, we denote

a(x) = {V (x), V ∈ a}, x ∈ Rn.

The celebrated Hörmander’s theorem proved in [Hörmander (1967)] is the

following:

Theorem 3.1 Assume that for every x0 ∈ Rn,

L(x0) = Rn,

then the operator L is hypoelliptic.

Remark 3.1 This is also a necessary condition when the Vi’s are with

analytic coefficients (see [Derridj (1971)]).

Remark 3.2 It is also possible to obtain hypoellipticity results for second

order differential operators which can not be written as a sum of squares

(see [Oleinic and Radkevic (1973)]).

The original proof of Hörmander was rather complicated and has been con-

siderably simplified in [Kohn (1973)] using the theory of pseudo-differential

operators. The probabilistic counterpart of the theorem, which is the exis-

tence of a smooth density for the random variable Xx0
t , t > 0, has first been

pointed out in [Malliavin (1978)] where, in order the reprove the theorem

under weaker assumptions, the author has developed a stochastic calculus

of variations which is now known as the Malliavin calculus (see Appendix

A and [Nualart (1995)] for a very complete exposition). After Malliavin’s
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work, let us mention the work [Bismut (1981)] in which the author uses

interesting integration by parts formulae to prove the theorem. This is this

probabilistic counterpart that we shall now prove.

Theorem 3.2 Assume that at some x0 ∈ Rn we have

L(x0) = Rn, (3.3)

then, for any t > 0, the random variable Xx0
t has a smooth density with

respect to the Lebesgue measure of Rn, where (Xx0
t )t≥0 denotes the solution

of (3.1).

Proof. We shall show that Xx0
1 admits a density with respect to the

Lebesgue measure, by using the Malliavin covariance matrix Γ (see Ap-

pendix A) associated with Xx0
1 . Observe, that for notational convenience

we take t = 1, but the proof is exactly the same for any t > 0. We proceed

in several steps. In a first step, we perform the computation of Γ, in a

second step we show that Γ is almost surely invertible and finally, we shall

qualitatively explain why for every p > 1,

E

(
1

| det Γ |p
)
< +∞.

Step 1. By definition, we have

Γ =

(∫ 1

0

〈DsX
i
1,DsX

j〉Rdds

)

1≤i,j≤n

,

but from Theorem (A.7) of Appendix A,

D
j
tX1 = J0→1J

−1
0→tVj(Xt), j = 1, ..., d, 0 ≤ t ≤ 1,

where (J0→t)t≥0 is the first variation process defined by

J0→t =
∂Xx

t

∂x
.

Therefore,

Γ = J0→1

∫ 1

0

J−1
0→tV (Xt)

TV (Xt)
T J−1

0→tdt
TJ0→1,

where V denotes the n× d matrix (V1...Vd).
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Step 2. Since J0→1 is almost surely invertible, in order to show that Γ is

invertible with probability one, it is enough to check that with probability

one, the matrix

C =

∫ 1

0

J−1
0→tV (Xt)

TV (Xt)
TJ−1

0→tdt

is invertible. For this, let us introduce the family of processes

Ct =

∫ t

0

J−1
0→sV (Xs)

TV (Xs)
TJ−1

0→sdt, t ≥ 0.

We denote the kernel of Ct by Kt ⊂ Rn and get a decreasing sequence

of random subspaces of Rn. From Blumenthal zero-one law, the space

V = ∪t>0Kt is deterministic with probability one.

Let now y ∈ V , and consider the stopping time

θ := inf{s > 0, T yCsy > 0}

Then θ > 0 almost surely. From the expression of Ct, we get therefore that

for 0 ≤ s < θ,

T y J−1
0→sVi(Xs) = 0, i = 1, ..., d.

By applying this at s = 0, we obtain first

T y Vi(x0) = 0, i = 1, ..., d.

Observe now that

J−1
0→sVi(Xs) = Φ∗

sVi,

where Φ denotes the stochastic flow associated with equation (3.1), and

where Φ∗
sVi denotes the pull-back action of Φ on Vi. Therefore, according

to the Itô’s formula given in Proposition A.6 of Appendix A, we obtain that

for t < θ,

d∑

j=1

∫ t

0

(
Φ∗

sLVj
V
)
(x0) ◦ dBj

s = 0, i = 1, ..., d,

that is

d∑

j=1

∫ t

0

T y (Φ∗
s[Vj , Vi]) (x0) ◦ dBj

s = 0, i = 1, ..., d.



March 24, 2007 0:33 WSPC/Book Trim Size for 9in x 6in source

54 An Introduction to the Geometry of Stochastic Flows

Therefore, due to the uniqueness of the semimartingale decomposition, for

0 ≤ s < θ,

T y (Φ∗
s[Vj , Vi]) (x0), i, j = 1, ..., d.

By applying this at s = 0, we obtain then

T y [Vj , Vi](x0) = 0, i, j = 1, ..., d.

An iteration of the Itô’s formula given in Proposition A.6 of Appendix A

shows then that, we actually have

T y U(x0) = 0, U ∈ L(x0),

so that y = 0. From this, we conclude that V = 0 and thus that C is

invertible with probability one. Therefore, the random variable Xx0
1 admits

a density with respect to the Lebesgue measure.

Step 3. To show that the density of Xx0
1 is smooth, we have to show that

for every p > 1,

E

(
1

| det Γ |p
)
< +∞.

Recall now that, with the previous notations

Γ = J0→1C
TJ0→1.

By differentiating the stochastic differential equation (3.1) with respect to

the initial condition, we obtain (non-autonomous linear equations for the

processes (J0→t)t≥0 and (J−1
0→t)t≥0; see [Malliavin (1997)], pp. 240, for

further details. These equations make easy the proof of the fact that for

every p > 1,

E

(
1

| detJ0→1 |2p

)
< +∞.

Therefore, it remains to show that for every p > 1,

E

(
1

| detC |p
)
< +∞.

The idea is to introduce again the process

Ct =

∫ t

0

J−1
0→sV (Xs)

TV (Xs)
TJ−1

0→sdt, t ≥ 0,
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and to control the smallest eigenvalue of Ct by showing that it can not be

too small. It can be done by estimating the quantity

sup
‖v‖=1

P
(
T v Ctv ≤ ε

)
= sup

‖v‖=1

P




d∑

j=1

∫ t

0

(
T v J−1

0→sVj(Xs)
)2
ds ≤ ε




with the help of the so-called Norris lemma. This lemma roughly says that,

when the quadratic variation or the bounded variation part of a continuous

semimartingale is large, then the semimartingale can only be small with an

exponentially small probability.

We do not go into details on this part, since it is very technical, and

we believe that the most interesting aspect of the probabilistic proof of

Hörmander’s theorem is to see how L(x0) appears in the Malliavin matrix.

For further details on the Norris lemma and its use, we refer to [Nualart

(1995)] pp. 116-123. �

Remark 3.3 Therefore, under the assumption (3.3), there exists a

smooth function p on (0,+∞) × Rn such that for any smooth function

f : Rn → R which is compactly supported

(Ptf)(x0) =

∫

Rn

p(t, y)f(y)dy,

where (Pt)t≥0 denotes the transition function of the strong Markov process

(Xx0
t )t≥0. Moreover, the function p satisfies Kolmogorov’s forward equa-

tion:

∂p

∂t
= L∗p,

where L∗ is the adjoint of L.

Remark 3.4 There is a special case of Hörmander’s theorem, which cov-

ers very many of the applications one meets in practice; this is the case

where L is elliptic at x0, that is (V1(x0), ..., Vd(x0)) are enough to span Rn.

This special case had earlier been obtained by Hermann Weyl.

Remark 3.5 Let us mention that it possible to extend Hörmander’s the-

orem to stochastic differential equations valued in a separable Hilbert space

of the type

dXt = (AXt + α(Xt))dt+

d∑

i=1

σi(Xt)dB
i
t ,
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where A generates a strongly continuous group; for further details we refer

to [Baudoin and Teichmann (2003)].

One can extend slightly Hörmander’s theorem.

Theorem 3.3 Let x0 ∈ Rn and N ∈ N. If LN+1(x0) = Rn, then for any

t > 0, the random variable

(Xx0
t , B∗

t )

has a smooth density with respect to the Lebesgue measure of Rn×GN(Rd),

where (Xx0
t )t≥0 is the solution of (3.1) with initial condition x0 and (B∗

t )t≥0

the lift of (Bt)t≥0 in the free Carnot group GN(Rd).

Proof. With a slight abuse of notation, we still denote Vi (resp. Di)

the extension of Vi (resp. Di) to the space Rn × GN(Rd). The process

(Xx0
t , B∗

t )t≥0 is easily seen to be a diffusion process in Rn × GN(Rd) with

infinitesimal generator

1

2

d∑

i=1

(Vi +Di)
2.

Thus, to prove the theorem, it is enough to check the Hörmander’s condition

for this operator at the point (x0, 0). Now, notice that for 1 ≤ i, j ≤ n,

[Vi, Dj ] = 0, so that

Lie(V1 +D1, ..., Vn +Dn)(x0, 0) ≃ LN+1(x0) ⊕ gN (Rd),

because gN (Rd) is step N nilpotent. We denoted Lie(V1 +D1, ..., Vn +Dn)

the Lie algebra generated by (V1 +D1, ..., Vn +Dn). The conclusion follows

readily. �

Example 3.1 For N = 0, we have G0(R
d) = {0} and Theorem 3.3 is the

classical Hörmander’s theorem.

Example 3.2 For N = 1, we have G1(R
d) ≃ Rd and Theorem 3.3 gives

a sufficent condition for the existence of a smooth density for the variable

(Xx0
t , Bt).

Example 3.3 For N = 2, we have G2(R
d) ≃ Rd × R

d(d−1)
2 and Theorem

3.3 gives a sufficent condition for the existence of a smooth density for the

variable

(Xx0
t , Bt,∧Bt).
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where

∧Bt =

(
1

2

∫ t

0

Bi
sdB

j
s −Bj

sdB
i
s

)

1≤i<j≤d

.

3.2 Sub-Riemannian geometry

The goal of this section is to present the basic results of sub-Riemannian

geometry, which is the natural geometry associated with hypoelliptic opera-

tors. We essentially aim at generalizing the geometry of the Carnot Groups

that has been presented in the previous chapter.

From now on, we consider d vector fields Vi : Rn → Rn which are C∞

bounded and shall always assume that the following assumption is satisfied.

Strong Hörmander’s Condition: For every x ∈ Rn, we have:

span{VI(x), I ∈ ∪k≥1{1, ..., d}k} = Rn.

We recall that if I = (i1, ..., ik) ∈ {1, ..., d}k is a word, we denote by VI

the commutator defined by

VI = [Vi1 , [Vi2 , ..., [Vik−1
, Vik

]...].

Let us mention that in sub-Riemannian litterature, the strong Hörmander’s

condition is more often called the Chow’s condition or bracket generating’s

condition.

Definition 3.2 The set of linear combinations with smooth coefficients

of the vector fields V1, ..., Vd is called the differential system (or sheaf)

generated by these vector fields. It shall be denoted in the sequel D.

With this definition, we can roughly say that the goal of the sub-

Riemannian geometry is to study the intrinsic object of the distribution,

such the symmetry groups, the local differential invariants, etc...

Observe that D is naturally endowed with a structure of C∞(Rn,R)-

module. For x ∈ Rn, we denote

D(x) = {X(x), X ∈ D}.

If the integer dimD(x) does not depend on x, then D is said to be a distribu-

tion. Observe that the Lie bracket of two distributions is not necessarily a

distribution, so that we really have to work with differential systems. In the
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case where dimD(x) is constant and equals the dimension of the ambient

space, that is n, the distribution is said to be elliptic. The study of elliptic

distributions is exactly the Riemannian geometry. The sub-Riemannian ge-

ometry is much more rough than the Riemannian one. Some of the major

differences between the two geometries are the following:

(1) In general, it does not exist a canonical connection like the Levi-Civita

connection of Riemannian geometry;

(2) The Hausdorff dimension is greater than the manifold dimension (see

Chapter 2, in the case of the Carnot groups);

(3) The exponential map is never a local diffeomorphism in a neighborhood

of the point at which it is based (see [Rayner (1967)]);

(4) The space of paths tangent to the differential system and joining two

fixed points can have singularities (see [Montgomery (2002)]).

Before we go into the heart of the subject, it is maybe useful to provide

some examples.

Example 3.4 Let G be a Carnot group and consider for D the left in-

variant differential system which is generated by the basis of G. Then, D
satisfies the strong Hörmander’s condition and the sub-Riemannian geom-

etry associated with D is precisely the geometry that has been studied in

Chapter 2.

Example 3.5 Let M be a manifold of dimension d. Assume that there

exists on M a family of vector fields (V1, ..., Vd) such that for every x ∈ M,

(V1(x), ..., Vd(x)) is a basis of the tangent space at x . Let us denote by

D the differential system generated by (V1, ..., Vd) (it is actually a distri-

bution). Then, D satisfies the strong Hörmander’s condition and the sub-

Riemannian geometry associated with D is the Riemannian geometry on

M which is induced by the moving frame (V1(x), ..., Vd(x)).

Example 3.6 Let us consider the Lie group SO(3), i.e. the group of

3 × 3, real, orthogonal matrices of determinant 1. Its Lie algebra so(3)

consists of 3 × 3, real, skew-adjoint matrices of trace 0. A basis of so(3) is

formed by

V1 =




0 1 0

−1 0 0

0 0 0



 , V2 =




0 0 0

0 0 1

0 −1 0



 , V3 =




0 0 1

0 0 0

−1 0 0
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Observe that the following commutation relations hold

[V1, V2] = V3, [V2, V3] = V1, [V3, V1] = V2,

so that the differential system D which is generated by V1 and V2 satisfies

the strong Hörmander’s condition. The group SO(3) can be seen as the

orthonormal frame bundle of the unit sphere S2 and, via this identification,

D is generated by the horizontal lifts of vector fields on S2. Therefore, in

a way, the sub-Riemannian geometry associated with D is the geometry

of the holonomy of S2. This example shall be widely generalized at the

end of this chapter; actually many interesting examples of sub-Riemannian

geometries arise from principal bundles.

Example 3.7 Let us consider the Lie group SU(2), i.e. the group of

2 × 2, complex, unitary matrices of determinant 1. Its Lie algebra su(2)

consists of 2×2, complex, skew-adjoint matrices of trace 0. A basis of su(2)

is formed by

V1 =
1

2

(
i 0

0 −i

)
, V2 =

1

2

(
0 1

−1 0

)
, V3 =

1

2

(
0 i

i 0

)
.

Note the commutation relations

[V1, V2] = V3, [V2, V3] = V1, [V3, V1] = V2,

so that the differential system D which is generated by V1 and V2 satisfies

the strong Hörmander’s condition. Let us mention that there exists an

explicit homomorphism SU(2) → SO(3) which exhibits SU(2) as a dou-

ble cover of SO(3), so that this example is actually a consequence of the

previous one.

Definition 3.3 An absolutely continuous path c : [0, 1] → Rn is said to

be horizontal (with respect to D) if for almost every s ∈ [0, 1],

c′(s) ∈ D(c(s)).

We can now give the Chow’s theorem in its full generality.

Theorem 3.4 Let (x, y) ∈ Rn × Rn. There exists at least one absolutely

continuous horizontal curve c : [0, 1] → Rn such that c(0) = x and c(1) = y.

Unlike the case of a Carnot group, the proof of this theorem is far to be

easy (see the Chapter 2 of [Montgomery (2002)] for a complete and detailed

proof). Thanks to this theorem, it is possible like we did it in the case of
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the Carnot groups, to define a distance on Rn. From the definition of D,

any absolutely continuous and horizontal curve c : [0, 1] → Rn satisfies

c′(s) =

d∑

i=1

c′i(s)Vi(c(s)),

for some absolutely continuous curves ci : [0, 1] → R. The length of c is

defined by

l(c) =

∫ 1

0

√√√√
d∑

i=1

c′i(s)
2ds.

The Carnot-Carathéodory distance between two points a and b in Rn is

now defined as being

d(a, b) = inf l(c),

where the infimum is taken over the set of absolutely continuous horizontal

curves c : [0, 1] → Rn such that

c(0) = a, c(1) = b.

It can be shown, by proving a generalization in this framework of the ball-

box theorem seen in Chapter 2, that the topology given by the Carnot-

Carathéodory distance d is the usual Euclidean topology of Rn.

A horizontal curve with length d(a, b) is called a sub-Riemannian

geodesic joining a and b. With Chow’s theorem in mind, we address now

the problem of existence of geodesics, whose Riemannian analogue is the

classical Hopf-Rinow theorem.

Theorem 3.5 Any two points of Rn can be joined by a geodesic.

There is a major difference between Riemannian geodesics and sub-

Riemannian ones: unlike the two step Carnot group case, it may happen

that a geodesic is not smooth.

3.3 The tangent space to a hypoelliptic diffusion

First, we have to introduce some concepts of differential geometry. The set

of linear combinations with smooth coefficients of the vector fields V1, ..., Vd

is called the differential system (or sheaf) generated by these vector fields.
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It shall be denoted in the sequel D. Notice that D is naturally endowed

with a structure of C∞(Rn,R)-module. For x ∈ Rn, we denote

D(x) = {X(x), X ∈ D}.

If the integer dimD(x) does not depend on x, then D is said to be a distri-

bution. Observe that the Lie bracket of two distributions is not necessarily

a distribution, so that we really have to work with differential systems. The

Lie brackets of vector fields in V generates a flag of differential systems,

D ⊂ D2 ⊂ · · · ⊂ Dk ⊂ · · · ,

where Dk is recursively defined by the formula

Dk = Dk−1 + [D,Dk−1].

As a module, Dk is generated by the set of vector fields VI , where I describes

the set of words with length k. Moreover, due to Jacobi identity, we have

[Di,Dj ] ⊂ Di+j . This flag is called the canonical flag associated with the

differential system D. Hörmander’s strong condition, which we supposed

to hold, states that for each x ∈ Rn, there is a smallest integer r(x) such

that Dr(x) = Rn. This integer is called the degree of non holonomy at x.

Notice that r is upper continuous function, that is r(y) ≤ r(x) for y near

x. For each x ∈ Rn, the canonical flag induces a flag of vector subspaces,

D(x) ⊂ D2(x) ⊂ · · · ⊂ Dr(x)(x) = Rn.

The integer list
(
dimDk(x)

)
1≤k≤r(x)

is called the growth vector of V at

x. The point x is said to be a regular point of V if the growth vector is

constant in a neighborhood of x. Otherwise, we say that x is a singular

point. On a Carnot group, due to the homogeneity, all points are regular.

We are now able to define in a purely algebraic manner what shall be

relevant for us: the nilpotentization and the tangent space of V at a regular

point. Later, we shall see that this tangent space also can be constructed in

a purely metric manner. Let Vi = Di/Di−1 denote the quotient differential

systems, and define

N (D) = V1 ⊕ · · · ⊕ Vk ⊕ · · · .

The Lie bracket of vector fields induces a bilinear map on N (D) which

respects the grading: [Vi,Vj ] ⊂ Vi+j . Actually, N (D) inherits the structure

of a sheaf of Lie algebras. Moreover, if x is a regular point of D, then

this bracket induces a r(x)-step nilpotent graded Lie algebra structure on
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N (D)(x). Observe that the dimension of N (D)(x) is equal to n and that

from the definition, (V1(x), ..., Vd(x)) Lie generates N (D)(x).

Definition 3.4 If x is a regular point of D, the r(x)-step nilpotent graded

Lie algebra N (D)(x) is called the nilpotentization of D at x. This Lie

algebra is the Lie algebra of a unique Carnot group which shall be denoted

Gr(D)(x) and called the tangent space to D at x.

Remark 3.6 At a regular point x, Gr(D)(x) can be seen as a quotient

of Gr(x)(R
d).

Remark 3.7 The notation Gr is for Gromov.

Definition 3.5 If x is a regular point of D, we say that x is a normal

point of D if there exists a neighborhood U of x such that:

(1) for every y ∈ U , y is a regular point of D;

(2) for every y ∈ U , there exists a Carnot algebra isomorphism

ψ : N (D)(x) → N (D)(y),

such that ψ(Vi(x)) = Vi(y), i = 1, ..., d.

Remark 3.8 To say that x is a normal point of D is equivalent to say

that any relation of the type

r(x)∑

k=1

∑

I=(i1,...,ik)

aIVI(x), aI ∈ R,

can be extended in a smooth way to a relation,

r(x)∑

k=1

∑

I=(i1,...,ik)

aI(y)VI(y), y ∈ U.

More roughly speaking, if x is a normal point of D the isomorphism class of

N (D)(x) is constant in a neighborhood of x. Let us mention that in typical

cases there exist regular points which are not normal (see [Gershkovich and

Vershik (1988)]).

To illustrate these notions, we give now the nilpotentization and the tangent

space in the examples already seen.

Example 3.8 Let G be a Carnot group with Lie algebra g and consider

for D the left invariant differential system which is generated by the basis
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of G. Then, each point is normal and it is immediate that for every x ∈ G,

N (D)(x) = g,

Gr(D)(x) = G.

Example 3.9 Let M be a manifold of dimension d. Assume that there

exists on M a family of vector fields (V1, ..., Vd) such that for every x ∈ M,

(V1(x), ..., Vd(x)) is a basis of the tangent space at x and denote by D the

differential system generated by (V1, ..., Vd). Then, each point is normal

and for every x ∈ M,

N (D)(x) = Rd,

Gr(D)(x) = Rd.

Example 3.10 Let us consider on SO(3) the left invariant differential

system D generated by

V1 =




0 1 0

−1 0 0

0 0 0



 and V2 =




0 0 0

0 0 1

0 −1 0



 .

In that case, it is easily checked that each point is normal and that for

every x ∈ SO(3),

N (D)(x) = g2(R
2),

Gr(D)(x) = G2(R
2).

Example 3.11 Let us consider on SU(2) the left invariant distribution

D which is generated by

V1 =
1

2

(
i 0

0 −i

)
and V2 =

1

2

(
0 1

−1 0

)
.

Each point is normal and for every x ∈ SU(2),

N (D)(x) = g2(R
2),

Gr(D)(x) = G2(R
2).
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A really striking fact is that the tangent space Gr(D)(x) at a regular point

is not only a differential invariant but also a purely metric invariant. Actu-

ally Gromov discovered that it is possible, in a very general way, to define

a notion of tangent space to an abstract metric space. This point of view is

widely developed in [Gromov (1996)] and [Gromov (1999)], and is the start-

ing point of the so-called metric geometry. The Gromov-Hausdorff distance

between two metric spaces M1 and M2 is defined as follows: δGH(M1,M2)

is the infimum of real numbers ρ for which there exists isometric embed-

dings of M1 and M2 in a same metric space M3, say i1 : M1 → M3 and

i2 : M2 → M3, such that the Hausdorff distance of i1(M1) and i2(M2) as

subsets of M3 is lower than ρ. The important property of the Gromov-

Hausdorff distance is the following theorem.

Theorem 3.6 Suppose M1 and M2 are complete metric spaces with

δGH(M1,M2) = 0. Then M1 and M2 are isometric.

Thanks to this distance, we have now a convenient notion of limit of a

sequence metric spaces.

Definition 3.6 A sequence of pointed metric spaces (Mn, xn) is said to

Gromov-Hausdorff converge to the pointed metric space (M, x) if for any

positive R

lim
n→+∞

δGH (BMn
(xn, R) ,BM (x,R)) = 0,

where BMn
(xn, R) is the open ball centered at xn with radius R in Mn. In

that case we shall write

lim
n→+∞

(Mn, xn) = (M, x).

If M is a metric space and λ > 0, we denote λ · M the new metric space

obtained by multiplying all distances by λ.

Definition 3.7 Let M be a metric space and x0 ∈ M. If the Gromov-

Hausdorff limit

lim
n→+∞

(n · M, x0)

exists, then this limit is called the tangent space to M at x0.

We have the following theorem due to Mitchell [Mitchell (1985)] (see also
[Pansu (1989)]):

Proposition 3.1 Let x0 ∈ Rn be a regular point of D, then the tangent

space at x0 in Gromov-Hausdorff’s sense exists and is equal to Gr(D)(x0).
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Actually, even if x0 is not a regular point of D, the tangent space in Gromov-

Hausdorff sense exists. Therefore, from this theorem, it is possible to define

Gr(D)(x0) at any point of D. Nevertheless, if x0 is not a regular point,

then Gr(D)(x0) is not a Lie group (see [Belläiche (1996)]).

Example 3.12 Let us consider in R2, the two vector fields

V1 =
∂

∂x
,

and

V2 = x
∂

∂y
.

These vector fields span R2 everywhere, except along the line x = 0, where

adding

[V1, V2] =
∂

∂y

is needed. So, the distribution D generated by V1 and V2 satisfies the

strong Hörmander’s condition. The sub-Riemannian geometry associated

with D is called the geometry of the Grusin plane. In that case, for every

(x, y) ∈ R2,

Gr(D)(x, y) = R2, if x 6= 0,

whereas,

Gr(D)(x, y) = G2(R
2)/ exp(RV2), if x = 0.

Before we turn to applications in the theory of hypoelliptic diffusions, we

still have to generalize the notion of Pansu’s derivative (see Chapter 2,

Section 2.3.) in our context of general sub-Riemannian manifolds. This

generalization is due to [Margulis and Mostow (1995)], we shall only hint

their notion of Pansu’s derivative, since the rigorous construction is quite

technical but rather clear from an intuitive point of view. Let G be a Carnot

group and

F : G → Rn

be a map. Then F is said to be Pansu differentiable at g ∈ G if there exists

a Carnot group morphism

dPF (g) : G → Gr(D)(F (g)),
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such that for small t

F (g∆G

t h) ≈ F (g)
(
∆

Gr(D)(F (g))
t dPF (g)(h)

)
, h ∈ G,

where ∆G (resp. ∆Gr(D)(F (g)) ) are the canonical dilations on the Carnot

group G (resp. Gr(D)(F (g))).

This approximation formula should be understood in the same way than

the usual approximation formula

F (x+ h) ≈ F (x) + dF (x)(h),

for a map F defined between two manifolds.

We now apply all these new notions to study the stochastic differential

equation

Xx0
t = x0 +

d∑

i=1

∫ t

0

Vi(X
x0
s ) ◦ dBi

s. (3.4)

Theorem 3.7 Let x ∈ Rn be a regular point of D. Let (Xx
t )t≥0 denote

the solution of (3.4) with initial condition x. There exists a map

F : Gr(x)(R
d) → Rn

such that

Xx
t = F (B∗

t ) + t
r(x)+1

2 R(t),

where:

(1) (B∗
t )t≥0 is the lift of (Bt)t≥0 in the group GN (Rd);

(2) the remainder term R(t) is bounded in probability when t→ 0.

Moreover the map F is Pansu differentiable at 0Gr(x)
and the Pansu’s

derivative

dPF (0Gr(x)
) : Gr(x)(R

d) → Gr(D)(x)

is a surjective Carnot group morphism.

Proof. From Theorem 2.6 of Chapter 2, we have

Xx
t = F (B∗

t ) + t
r(x)+1

2 R(t), t ≥ 0,
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where the remainder term R is bounded in probability when t→ 0, and

F (B∗
t ) =


exp




r(x)∑

k=1

∑

I=(i1,...,ik)

ΛI(B)tVI




 (x).

Let now g ∈ G and y : [0, 1] → Rd an absolutely continuous path whose lift

y∗ : [0, 1] → Gr(x)(R
d) satisfies

y∗0 = 0Gr(x)(Rd)

and

y∗1 = g.

We have

F

(
∆

Gr(x)(R
d)

t g

)
=


exp




r(x)∑

k=1

tk
∑

I=(i1,...,ik)

ΛI(y)1VI




 (x).

Therefore, in small times

”F

(
∆

Gr(x)(R
d)

t g

)
≈ x+

r(x)∑

k=1

tk
∑

I=(i1,...,ik)

ΛI(y)1VI(x)”,

which leads to the expected result. �

We have a stronger approximation result in the normal case.

Theorem 3.8 Let x ∈ Rn be a normal point of D. Let (Xx
t )t≥0 denote

the solution of (3.4) with initial condition x. There exist a surjective Carnot

group morphism

πx : Gr(x)(R
d) → Gr(D)(x)

and a local diffeomorphism

ψx : U ⊂ Gr(D)(x) → Rn

such that

Xx
t = ψx (πxB

∗
t ) + t

r(x)+1
2 R(t), 0 < t < T

where:

(1) U is an open neighborhood of the identity element of Gr(D)(x);

(2) B∗ is the lift of B in the free Carnot group Gr(x)(R
d);
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(3) T is an almost surely positive stopping time;

(4) R is bounded in probability when t→ 0.

Proof. From Theorem 2.6 of Chapter 2, we have

Xx
t =


exp




r(x)∑

k=1

∑

I=(i1,...,ik)

ΛI(B)tVI




 (x) + t

r(x)+1
2 R(t), t ≥ 0,

where the remainder term R is bounded in probability when t → 0. Now,

since x is a normal point of D, we can write


exp




r(x)∑

k=1

∑

I=(i1,...,ik)

ΛI(B)tVI







 (x) = ψx(B̂t), t < T,

where

(1) ψx : U ⊂ Gr(D)(x) → Rn is a local diffeomorphism;

(2) B̂ is the lift of B in the Carnot group Gr(D)(x), with respect to the

family (V1(x), ..., Vd(x)) (recall that by construction, this family Lie

generates N (D)(x)) ;

(3) T is an almost surely positive stopping time.

Now, since gr(x)(R
d) is free, there exists a unique Lie algebra surjective

homomorphism αx : gr(x)(R
d) → N (D)(x) such that αx(Di) = Vi(x).

Since Carnot groups are simply connected nilpotent groups for which the

exponential map is a diffeomorphism, there exists a unique Carnot group

morphism πx : Gr(x) → Gr(D)(x) such that dπx = αx. We have πx(B∗
t ) =

B̂t which concludes the proof. �

Remark 3.9 Observe that πxB
∗
t is a lift of B in the Carnot group

Gr(D)(x).

Remark 3.10 Observe that the map ψx : U ⊂ Gr(D)(x) → Rn is

bi-Lipschitz with respect to the respective sub-Riemannian distances of

Gr(D)(x) and Rn.

Remark 3.11 We stress that theorem (3.8) is not true in general if x

is not a normal point of D. Indeed, let us assume that the nilpotentiza-

tion N (D)(x) is not constant in a neighborhood of x and that there exists

a bi-Lipschitz map ψx : U ⊂ Gr(D)(x) → Rn. In that case an extension of

Pansu-Rademacher’s theorem (see previous chapter) due to [Margulis and

Mostow (1995)] would imply that ψx is almost everywhere Pansu differen-

tiable and the derivatives would provide Carnot group morphisms between
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groups which are not isomorphic. This argument actually shows that there

is no inversion local theorem with respect to the Pansu’s derivative.

A case of particular importance which is covered by the previous theorem is

the elliptic case which corresponds to the case d = n and (V1(x), ..., Vn(x))

is a basis of Rn for any x ∈ Rn. In that case, recall that every point is

normal and we obtain

Corollary 3.1 Let x ∈ Rn and let (Xx
t )t≥0 denote the solution of (3.4)

with initial condition x. There exists a local diffeomorphism

ψx : U ⊂ Rn → Rn

such that

Xx
t = ψx (Bt) + tR(t), 0 < t < T

where:

(1) U is an open neighborhood of 0;

(2) T is an almost surely non negative stopping time;

(3) R is bounded in probability when t→ 0.

Another immediate corollary of Theorem 3.8 is the behaviour in small times

of a hypoelliptic heat kernel on the diagonal (see [Ben Arous (1989a)],
[Léandre (1992)] and [Takanobu (1988)]).

Corollary 3.2 Let x be a regular point of D. Let pt, t > 0, denote the

density of Xx with respect to the Lebesgue measure. We have,

pt(x) ∼t→0
C(x)

t
D(x)

2

,

where C(x) is a non negative constant and D(x) the Hausdorff dimension

of the tangent space Gr(D)(x).

Proof. We use Theorem 3.7 to write

Xx
t = F (B∗

t ) + t
r(x)+1

2 R(t),

where:

(1) (B∗
t )t≥0 is the lift of (Bt)t≥0 in the group GN(Rd);

(2) R(t) is bounded in probability when t→ 0;
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(3) the map

F : Rn × Gr(x)(R
d) → Rn

is Pansu differentiable at the origin with a surjective Pansu’s derivative.

Now, we have

(F (B∗
t ))t≥0 =law

(
F

(
∆

Gr(x)(R
d)√

t
B∗

1

))

t≥0

,

and

F

(
∆

Gr(x)(R
d)√

t
B∗

1

)
≈ x∆

Gr(D)(x)√
t

dPF (0Gr(x)(Rd))(B
∗
1 ),

in small times. Since dPF (0Gr(x)(Rd)) is surjective, the random variable

dPF (0Gr(x)(Rd))(B
∗
1 )

admits a density with respect to the Lebesgue measure. This concludes the

proof. �

3.4 Horizontal diffusions

In this section, we provide interesting examples of hypoelliptic diffusions

which arise naturally in Riemannian geometry. We shall assume basic

knowledge in Riemannian geometry and stochastic processes in this set-

ting as can be found in the Appendices A and B. We shall also assume

some very basic knowledge of the theory of principal bundles; for further

details, we refer to the Chapter 2 of [Kobayashi and Nomizu (1996)].

Let (M, g) be a d dimensional connected compact smooth Riemannian

manifold. That is, the manifold M is endowed with a (0, 2) definite positive

tensor g. This non-degenerate metric tensor can e.g. stem from an elliptic

differential system (V1, ..., Vd). That is, V1, ..., Vd are smooth vector fields

on M such that for every x0 ∈ M, (V1(x0), ..., Vd(x0)) is a basis of the

tangent space to M at x0. In that case g is defined at x0 by the condition

that (V1(x0), ..., Vd(x0)) is an orthonormal basis.

The tangent bundle to M is denoted TM and TmM is the tangent space

at m ∈ M: we have hence TM = ∪mTmM.
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An orthonormal frame atm ∈ M is a linear isomorphism u : Rd → TmM

such that for every x, y ∈ Rd,

gm(u(x), u(y)) = 〈x, y〉Rd ,

where 〈x, y〉Rd denotes the usual scalar product in Rd. The set of orthonor-

mal frames at m shall be denoted O (M)m. Observe that the Lie group

Od (R) of d×d orthogonal matrices acts naturally on O (M)m by u→ u◦g,
u ∈ O (M)m, g ∈ Od (R). Set now

O (M) =
⋃

m∈M

O (M)m .

This set is called the orthonormal frame bundle of M. It is easily checked

that it can be endowed with a differentiable manifold structure with di-

mension d(d+1)
2 that makes the canonical projection π : O (M) → M

a smooth map. We summarize the above properties by saying that

(O (M) ,M,Od (R)) is a principal bundle on M with structure group the

group Od (R). Working in this bundle aims at making equivariant the ob-

jects we are dealing with.

As in Appendix B, it is possible to show the existence of a unique metric,

torsion free, connection on M. That is, if we denote by V(M) the set of

smooth vector fields on M, there is a unique map

∇ : V(M) × V(M) → V(M)

such that for any U, V,W ∈ V(M) and any smooth f, g : M → R:

(1) ∇fU+gV W = f∇UW + g∇VW ;

(2) ∇U (V +W ) = ∇UV + ∇UW ;

(3) ∇U (fV ) = f∇UV + U(f)V ;

(4) ∇UV −∇V U = [U, V ];

(5) U(g(V,W )) = g(∇UV,W ) + g(V,∇UW ).

A vector field X along a smooth curve (ct)t≥0 on M is said to be parallel

along the curve if we always have

∇c′X = 0.

A smooth curve (ut)t≥0 in O(M) is called horizontal if for every x ∈ Rd,

the vector field u(x) is parallel along the curve πu. A vector X ∈ Tu0O(M)

is called horizontal if u is horizontal. The space of horizontal vectors at
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u0 is denoted Hu0O(M); it is a space of dimension d. We have the direct

decomposition

Tu0O(M) = Hu0O(M) ⊕ Vu0O(M)

where Vu0O(M) denotes the space of vectors tangent to the fiber O(M)πu0 .

The canonical projection π induces an isomorphism

π∗ : Hu0O(M) → Tπu0M,

and for each X ∈ TmM and a frame u0 at m, there is a unique horizontal

vector X∗, the horizontal lift of X from u0 such that π∗X∗ = X .

For each x ∈ Rd we can define a horizontal vector field Hx by the

property that at each point u ∈ O(M), Hx(u) is the horizontal lift of u(x)

from u.

Definition 3.8 Let (e1, ..., ed) be the canonical basis of Rd. The funda-

mental horizontal vector fields are given by

Hi = Hei
.

Observe that the differential system on O (M) generated by the horizontal

vector fields H1, ..., Hd, is nothing else than the horizontal distribution for

the Levi-Civita connection on M, that is HO(M).

The Bochner’s horizontal Laplacian is by definition the sum of squares

operator given by

∆O(M) =

d∑

i=1

H2
i .

The fundamental property of the Bochner’s horizontal Laplacian is that it

is the lift of the Laplacian operator ∆M of M. That is, for every smooth

f : M → R,

∆O(M)(f ◦ π) = (∆Mf) ◦ π.

As a direct consequence of this, it follows that the solution of the stochastic

differential equation

B∗
t = U0 +

d∑

i=1

∫ t

0

Hi (B∗
s ) ◦ dB̃i

s, t ≥ 0,

where U0 ∈ O (M) and
(
B̃t

)

t≥0
is a Rd− valued standard Brownian motion,

is such that the M-valued process (π(B∗
t ))t≥0 is a Brownian motion. That is,
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(π(B∗
t ))t≥0 is a Markov process with generator 1

2∆M. The process (B∗
t )t≥0

is called a horizontal Brownian motion.

Conversely, it can be shown that any Brownian motion (Bt)t≥0 on M

can be written (π(B∗
t ))t≥0 where (B∗

t )t≥0 is a horizontal Brownian motion.

The process (B∗
t )t≥0 is then called the horizontal lift of (Bt)t≥0. The linear

Brownian motion
(
B̃t

)

t≥0
which drives the stochastic differential equation

driven by (B∗
t )t≥0 is called the anti-development of (Bt)t≥0.

This passage through the orthonormal bundle is the classical Eels-

Elworthy-Malliavin’s approach to Riemannian Brownian motions (see e.g.
[Emery (1989)], [Hsu (2002)], or Part V of [Malliavin (1997)] ). The advan-

tage of this construction of Riemannian Brownian motions is that, firstly

it is intrinsic, and secondly it provides a pathwise construction obtained

by solving a globally defined stochastic differential equation. The bijective

map
(
B̃t

)

t≥0
→ (Bt)t≥0

is called the Itô’s map of the manifold. Also observe that this construction

proves that the natural filtration of a Riemannian Brownian motion is the

same than the natural filtration of a linear d-dimensional Brownian motion;

a fact, which a priori was not obvious from the original definition of the

Brownian motions on a manifold (see Appendix A).

Let us now see how the Levi-Civita connection ∇ manifests itself on the

bundle (O (M) ,M,Od (R)). Let us denote od(R) the Lie algebra of Od (R),

that is the space of d× d skew symmetric matrices. For every M ∈ od(R),

we can define a vertical vector field VM on O (M) by

(VMF )(u) = lim
t→0

F
(
uetM

)
− F (u)

t
,

with u ∈ O (M) and F : O (M) → R. Observe that the map M → VM (u)

is an isomorphism from od(R) onto the set VuO(M) of vertical vector fields

at u. Then, the connection form on O (M) (often called the Ehresmann

connection), is the unique skew-symmetric matrix ω of one forms on O (M)

such that:

(1) ω(X) = 0 if and only if X ∈ HO(M);

(2) Vω(X) = X if and only if X ∈ VO(M).

Associated with this Ehresmann connection on O (M), which corresponds to

the Levi-Civita connection on M we have two Cartan’s structural equations
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(see Appendix B, Section B.8 for the two Cartan’s structural equations on

M). The first structural equation reads

dΘ + Θ ∧ ω = 0,

where Θ is the so-called tautological one form on O (M) defined by:

Θ(X)(u) = u−1π∗X, X ∈ TuO (M) .

The second structural equation reads

dω + ω ∧ ω = Ω,

and can be taken as a definition of the curvature form Ω. It can be shown

that

Ω(X,Y )(u) = u−1R(π∗X,π∗Y )u, X, Y ∈ TuO (M) ,

where R denotes the Riemannian curvature tensor on M.

For u ∈ O (M), let us now consider the map

Ψu : od(R) → od(R)

such that

Ψu(M) =




∑

1≤i<j≤d

Ωk
l (Hi, Hj)(u)Mi,j




1≤k,l≤d

.

We have the following theorem (compare to Chernyakov’s theorem, see
[Gershkovich and Vershik (1994)] pp. 22):

Theorem 3.9 Assume that for every u ∈ O (M), the application Ψu is

an isomorphism, then:

(1) the horizontal distribution HO(M) satisfies the strong Hörmander’s

condition;

(2) every u ∈ O (M) is normal and Gr(HO(M))(u) = G2(R
d).

Proof. From the Cartan’s formula, we have

Θ([Hi, Hj ]) = HiΘ(Hj) −HjΘ(Hi) − dΘ(Hi, Hj),

where Θ is the tautological one-form on O(M). Now, from the first struc-

tural equation, we have

dΘ = −Θ ∧ ω
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where ω is the Ehresmann connection form. This implies,

Θ([Hi, Hj]) = 0.

Thus, the commutator of two fundamental vector fields is vertical. Using

the second structure equation

dω = −ω ∧ ω + Ω,

where Ω is the curvature form, we obtain in a similar way with Cartan’s

formula,

ω([Hi, Hj ]) = −Ω(Hi, Hj).

Thus,

[Hi, Hj ] = −VΩ(Hi,Hj).

Since the map M → VM (u) is an isomorphism, for every u ∈ O(M) the

family (Hi(u), [Hj , Hk](u)) is a basis of TuO (M). Therefore the horizontal

distribution HO(M) satisfies the strong Hörmander’s condition. The fact

every u ∈ O (M) is normal and Gr(HO(M))(u) = G2(R
d) stems from

the fact the growth vector is maximal and constant on O (M). The above

computations have indeed shown that it is always
(
d, d(d−1)

2

)
. �

Remark 3.12 In dimension d = 2, the assumption that for every u, the

application Ψu is non degenerate is equivalent to the fact that the Gauss

curvature of M never vanishes.

Remark 3.13 If we assume that (M, g) is an oriented manifold the as-

sumption that at u ∈ O(M), the application Ψu is an isomorphism is equiv-

alent to the fact that the holonomy group at π(u) is SOd(R).

By applying Theorem 3.8 and using the identification G2(R
d) ≃ Rd ×

R
d(d−1)

2 , we obtain therefore

Corollary 3.3 Assume that for every u ∈ O (M), the application Ψu is

an isomorphism. Let (Bt)t≥0 be a Brownian motion on M. Then, there

exist a local submersion

ψ : U ⊂ Rd × R
d(d−1)

2 → O(M)



March 24, 2007 0:33 WSPC/Book Trim Size for 9in x 6in source

76 An Introduction to the Geometry of Stochastic Flows

and a standard linear Brownian motion (βt)t≥0 on Rd, such that for any

smooth function f : M → R,

f(Bt) = f

(
ψ

(
βt,

(∫ t

0

βi
sdβ

j
s − βj

sdβ
i
s

)

1≤i<j≤d

))
+t

3
2 R(t, f), 0 < t < T,

where:

(1) U is an open neighborhood of 0 in Rd × R
d(d−1)

2 ;

(2) T is an almost surely non negative stopping time;

(3) R is bounded in probability when t→ 0.

Proof. Indeed, let (Bt)t≥0 be a Brownian motion on M. Let us de-

note (B∗
t )t≥0 the horizontal lift of (Bt)t≥0 to O(M) and (βt)t≥0 the anti-

development of (Bt)t≥0. By applying Theorem 3.8 to (B∗
t )t≥0, we obtain

the expected result. �

Under the non-degeneracy assumption, we can moreover give an expression

for the horizontal heat kernel in small times. On O (M), let us consider the

measure µ which reads in local bundle trivializations as the product of the

Riemannian measure on M and of the normalized Haar measure of Od(R).

Corollary 3.4 Assume that for every u ∈ O (M), the application Ψu is

an isomorphism. Then, if p∗t denotes the density with respect to µ of a

horizontal Brownian motion on O (M) started at u, we have

pt(u) ≃t→0
C

| detΨu | t d2

2

,

where C > 0 is a universal constant which does not depend on M.

Proof. It follows readily from the approximation

f(B∗
t ) =f


exp




d∑

i=1

Hiβ
i
t +

1

2

∑

1≤j<k≤d

[Hj , Hk]

∫ t

0

βi
sdβ

j
s − βj

sdβ
i
s


 (u)




+ t
3
2 R(t),

which stems from Theorem 3.8 (here f : O(M) → R is a smooth function

and β the anti-development of B). �

We can extend without difficulties the previous discussion to the case

of general principal bundles. Let M be a d-dimensional connected smooth
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manifold. Let now G be a Lie subgroup of the linear group GLd(R) with

Lie algebra g. A principal bundle (B,M,G) consists first of a submersion

π : B → M

such that each fiber is isomorphic to G. There is also a right action of G

on B with the property that orbits are exactly the fibers of the bundle.

Finally, we must ask that (B,M,G) is locally trivializable in the sense that

for every x ∈ M, there is a diagram

φ

π−1 (U) → U ×G

ց ւ
U

that commutes with the right actions of G on both π−1(U) and U × G,

where φ is a local diffeomorphism and U a neighborhood x. For u0 ∈ B, we

denote Vu0B the space of vectors tangent to the fiber Bπu0 . As before, for

every X ∈ g, we can define a vertical vector field VX on B by

(VXF )(u) = lim
t→0

F
(
uetX

)
− F (u)

t
, u ∈ B, F : B → R,

and the map X → VX(u) is an isomorphism from g onto the set VuO(M).

A connection in (B,M,G) is an assignment of a subspace Hu0B of Tu0B

to each u0 ∈ B such that:

(1) Tu0B = Hu0B ⊕ Vu0B;

(2) Hu0gB = (Rg)∗Hu0B, for every u0 ∈ B and g ∈ G, where Rg is the

transformation of B induced by g ∈ G, Rgu0 = u0g;

(3) Hu0gB depends differentiably on u0.

Given a connection in (B,M,G) we define the connection form ω as the g

valued one-form on B such that:

(1) ω(X) = 0 if and only if X ∈ HB;

(2) Vω(X) = X if and only if X ∈ VB.

We also define the curvature form Ω as the g valued two-form on B such

that:

dω + ω ∧ ω = Ω.
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As in the orthonormal frame bundle over a Riemannian manifold, we can

define d fundamental horizontal vector fields H1, ..., Hd. Indeed, for every

u ∈ B, the canonical projection π induces an isomorphism

π∗ : HuB → TπuM,

and for each X ∈ TmM and u0 ∈ B at m, there is a unique horizontal

vector X∗, the horizontal lift of X from u0 such that π∗X∗ = X . Now,

for each x ∈ Rd we can define a horizontal vector field Hx by the property

that at each point u ∈ B, Hx(u) is the horizontal lift of u(x) from u. The

fundamental horizontal vector fields are then given by Hi = Hei
, where

(e1, ..., ed) is the canonical basis of Rd. Observe that the differential system

on B generated by the horizontal vector fields H1, ..., Hd is HB.

We define finally the fundamental horizontal diffusion on the bundle

(B,M,G) as the diffusion process on B with infinitesimal generator

∆B =

d∑

i=1

H2
i . (3.5)

The hypoellipticity property of ∆B is again related to the non-degenerence

of the curvature form Ω. Namely, for u ∈ B, consider the map

Ψu : od(R) → g

defined by

Ψu(M) =
∑

1≤i<j≤d

Mi,jΩ(Hi, Hj)(u).

Proposition 3.2 Let us assume that at u ∈ B, Ψu is surjective, then

the operator ∆B satisfies the Hörmander’s condition at u. More precisely,

(Hi(u), [Hj , Hk](u))1≤i,j,k≤d generates TuB.

Proof. It directly stems from the identity

[Hi, Hj ] = −VΩ(Hi,Hj).
�

If Ψu is always surjective then all the points are normal and we can moreover

compute explicitly the nilpotentizations and the tangent spaces. Let u ∈ B.

Consider on the linear space Rd ⊕ g the polynomial group law given by

(x,X) ⋆ (y, Y ) =

(
x+ y,X + Y +

1

2
Ω

(
d∑

i=1

xiHi,

d∑

i=1

yiHi

)
(u)

)
.
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Then, it is easily seen that
(
Rd ⊕ g, ⋆

)
is a two-step Carnot group that we

shall denote GΩu. Observe that from the assumption that Ψu is always

surjective, for every u, v ∈ B, there exists a Carnot group isomorphism

GΩu → GΩv. In this setting, we easily prove:

Proposition 3.3 Let us assume that for every u ∈ B, Ψu is surjective.

Then every point u ∈ B is normal and Gr(HB)(u) = GΩu.

As an immediate corollary, we get

Corollary 3.5 Let us assume that for every u ∈ B, Ψu is surjective.

Let pt, t > 0, denote the heat kernel of (3.5) with respect to any Lebesgue

measure. We have,

pt(u, u) ∼t→0
C(u)

t
d
2 +dim g

,

where C(u) is a non negative constant.

3.5 Regular sublaplacians on compact manifolds

Let M be a connected compact smooth manifold. We consider on M a

second order differential operator

L =

d∑

i=1

V 2
i ,

which satisfies the strong Hörmander’s condition. Let D denote the differ-

ential system generated by V1, ..., Vd. We assume that there exists a Carnot

group G such that for every x ∈ M,

Gr(D)(x) = G.

If the previous assumptions are satisfied, then L shall be said to be regular.

Since the manifold M is assumed to be compact, it is possible to develop

a spectral theory for L which is similar to the spectral theory of elliptic

operators. Let us hint this theory.

Let us denote X the diffusion associated with L. First, we are going to

show that X is Harris recurrent. That is, there is a Borel measure m on M

such that for every Borel set A ⊂ M:
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(1) m(A) > 0 implies that for any x ∈ M, and t > 0,

P (∃ s > t, Xs ∈ A | X0 = x) = 1;

(2)

∫

M

P (Xt ∈ A | X0 = x)m(dx) = m(A), t > 0.

For further details on Harris recurrent processes, we refer to [Revuz and

Yor (1999)], pp. 425. Since M is compact, this recurrence property is a

consequence of the following lemma:

Lemma 3.1 Let O ⊂ M be a non empty, relatively compact, connected

with smooth, non empty boundary, open set, then for any x ∈ M, and t > 0,

P (∃ s > t, Xs ∈ O | X0 = x) = 1.

Proof. Define

τO = inf{t > 0, Xt ∈ O},

and

hO(x) = P (τO < +∞ | X0 = x) , x ∈ M.

It is easy to see that

LhO = 0

on M − O. From the general theory of Markov processes, there are two

possibilities: Either hO = 1 on M and for any x ∈ M, and t > 0,

P (∃ s > t, Xs ∈ O | X0 = x) = 1,

or 0 < hO < 1 on M − O. The Bony’s strong maximal principle for

hypoelliptic operators (see [Bony (1969)]), implies actually that the only

possibility is h = 1. �

Therefore, the diffusion X is ergodic, i.e. for any smooth function f : M →
R and any x ∈ M,

lim
t→+∞

E (f(Xt) | X0 = x) =

∫

M

fdm,
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where m is the invariant measure for X . Observe that m is solution of the

equation

L∗m = 0,

so that, from Hörmander’s theorem it admits a smooth density. An im-

mediate corollary of the ergodicity of X is the following Liouville’s type

theorem.

Corollary 3.6 Let f : M → R be a smooth function such that

Lf = 0,

then f is constant.

Proof. Indeed,

Lf = 0

implies that for every t ≥ 0, x ∈ M,

E (f(Xt) | X0 = x) = f(x).

Thus,

f(x) = lim
t→+∞

E (f(Xt) | X0 = x) =

∫

M

fdm.
�

We shall now assume furthermore than L is self-adjoint with respect to m,

i.e. for any smooth functions f, g : M → R
∫

M

g(Lf)dm =

∫

M

(Lg)fdm.

In that case, etL is a compact self-adjoint operator in L2(M,m). We deduce

that L has a discrete spectrum tending to −∞. We furthermore have a

Minakshisundaram-Pleijel type expansion for the heat kernel pt associated

with L:

pt (x, y) =

+∞∑

k=0

e−µkt

(
Nk∑

i=1

ϕk
i (x)ϕk

i (y)

)

where:

(1) {−µk} is the set of eigenvalues of L;

(2) Nk = dimV(µk) = dim{f | Lf = −µkf};
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(3)
(
ϕk

i

)
is an orthonormal basis of V(µk) for the global scalar product

〈ϕ, ψ〉 =

∫

M

ϕψdm.

Let us denote Sp(L) the set of eigenvalues of L repeated according to

multiplicity.

Theorem 3.10 For λ > 0, let

N(λ) = Card (Sp(L) ∩ [−λ, 0]) .

We have

N(λ) ∼λ→+∞ C(L,M)λ
D
2 ,

where C(L,M) is a non negative constant and D the Hausdorff dimension

of G.

Proof. The asymptotic development of the heat semigroup etL on the

diagonal leads to

Tr(etL) =

∫

M

pt(x, x)dm(x) ∼t→0
K

t
D
2

,

where K is a non negative constant. On the other hand,

Tr(etL) =

+∞∑

k=0

Nke
−µkt.

Therefore,

+∞∑

k=0

Nke
−µkt ∼t→0

K

t
D
2

.

The result follows then from the following Karamata’s theorem: if µ is a

Borel measure on [0,∞), α ∈ (0,+∞), then

∫ +∞

0

e−tλdµ(λ) ∼t→0
1

tα
,

implies
∫ x

0

dµ(λ) ∼x→+∞
xα

Γ(1 + α)
.

�
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Remark 3.14 We believe that the constant C(L,M) is an interesting

invariant of the sub-Riemannian geometry that L induces on M (recall that

in the Riemannian case, it is simply, up to scale, the Riemannian volume

of the manifold). For instance, it would be interesting to know if C(L,M)

is the Hausdorff measure of M.

To conclude this section, this is maybe interesting to study carefully an

example. Let us consider the Lie group SU(2). As already observed, a

basis of su(2) is formed by

V1 =
1

2

(
i 0

0 −i

)
, V2 =

1

2

(
0 1

−1 −0

)
, V3 =

1

2

(
0 i

i 0

)
,

and the commutation relations hold

[V1, V2] = V3, [V2, V3] = V1, [V3, V1] = V2. (3.6)

We want to study the regular sub-Laplacian

L = V 2
2 + V 2

3 .

Actually, we shall study the following family of operators defined for ε ∈
[0, 1],

Lε = εV 2
1 + V 2

2 + V 2
3 .

Observe that each Lε is self-adjoint with respect to the normalized Haar

measure of SU(2). For ε > 0, Lε is elliptic so that

Card (Sp(Lε) ∩ [−λ, 0]) ∼λ→+∞ Cελ
3
2 ,

whereas

Card (Sp(L) ∩ [−λ, 0]) ∼λ→+∞ Cλ2.

Therefore, it is interesting to understand the spectrum when ε→ 0.

Proposition 3.4 Let ε ∈ [0, 1). The set of eigenvalues of Lε is the set

{−λε
n,m, n ∈ N, 0 ≤ m ≤ n},

where

λε
n,m = ε

n2

4
+
n

2
− (1 − ε)m2 + (1 − ε)mn.

Moreover, the multiplicity of λε
n,m is equal to n+ 1.
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Proof. We use the theory of representations of SU(2); for a detailed

account on it, we refer to Taylor [Taylor (1986)], Chapter 2. Let ε ∈ [0, 1).

Thanks to the relations (3.6), note that Lε commutes with L1 = V 2
1 +

V 2
2 +V 2

3 . Therefore Lε acts on each eigenspace of L1. We can examine the

spectrum of Lε by decomposing L2 (SU(2)) into eigenspaces of L1, which

is equivalent to decomposing it into subspaces irreducible for the regular

action of SU(2) × SU(2) given by

((g, h) · f)(x) = f(g−1xh), f ∈ L2 (SU(2)) , g, h, x ∈ SU(2).

Now, it is known (see for instance Taylor [Taylor (1986)]) that, up to equiv-

alence, for every k ∈ N, there exists one and only one irreducible representa-

tion πk : SU(2) → Ck+1. Thus, by the Peter-Weyl theorem, the irreducible

spaces of L2 (SU(2)) for the regular action are precisely the spaces of the

form

Vk = span{πi,j
k , 1 ≤ i, j ≤ k + 1},

where πi,j
k denotes the components of the representation πk in a chosen

orthonormal basis of Ck+1. Observe now that each space Vk is an eigenspace

of L1. The associated eigenvalue is −k(k+2)
4 . If we consider now the left

regular representation

(g · f)(x) = f(g−1x), f ∈ L2 (SU(2)) , g, x ∈ SU(2),

then Vk is a direct sum of k + 1 irreducible representations of SU(2), each

equivalent to πk:

Vk =
k+1⊕

l=1

Vk,l,

where Vk,l = span{πi,l
k , 1 ≤ i ≤ k + 1}. Each Vk,l splits into one-

dimensional eigenspaces for V1:

Vk,l =
⊕

µ

Vk,l,µ,

where

µ ∈
{
−k

2
,−k

2
+ 1, ...,

k

2

}
,

and

V1 = iµ on Vk,l,µ.
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Since Lε = L1 − (1 − ε)V 2
1 , we have

Lε = −
(
k(k + 2)

4
− (1 − ε)µ2

)
,

on Vk,l,µ. �

From this, we deduce immediately:

Card (Sp(Lε) ∩ [−λ, 0]) ∼λ→+∞
8

3

√
ελ

3
2 ,

whereas

Card (Sp(L) ∩ [−λ, 0]) ∼λ→+∞ 2λ2.

3.6 Stochastic differential equations driven by loops

On the free Carnot group GN(Rd), consider the fundamental process

(B∗
t )t≥0 defined as the solution of the stochastic differential equation

B∗
t =

d∑

i=1

∫ t

0

Di(B
∗
s ) ◦ dBi

s, t ≥ 0.

That is, (B∗
t )t≥0 is the lift in GN(Rd) of the Brownian motion (Bt)t≥0.

More generally, if (Mt)t≥0 is a Rd-valued semimartingale, we shall denote

(M∗
t )t≥0 the lift of (Mt)t≥0 in GN (Rd).

Let us denote pt(x, y), t > 0, the smooth transition kernel with respect

to the Lebesgue measure of (B∗
t )t≥0. Let us recall (see Appendix A) that

it is defined by the property that

P
(
B∗

t+s ∈ dy | B∗
s = x

)
= pt(x, y)dy,

for any t, s > 0 and x, y ∈ GN (Rd). From a partial differential equations

point of view, it is also the fundamental solution of the equation

∂p

∂t
=

1

2

(
d∑

i=1

D2
i

)
p.

In this first proposition we construct the N -step Brownian loop. This

process is the Brownian motion (Bt)t≥0 conditioned by B∗
T = 0GN (Rd).
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Proposition 3.5 Let T > 0. There exists a unique Rd-valued continuous

process (PN
t,T )0≤t≤T such that

PN,i
t,T = Bi

t +

∫ t

0

Di ln pT−s

(
PN,∗

s,T , 0GN (Rd)

)
ds, t < T, i = 1, ..., d. (3.7)

It enjoys the following properties:

(1) PN,∗
T,T = 0GN (Rd), almost surely;

(2) for any predictable and bounded functional F ,

E
(
F ((Bt)0≤t≤T ) | B∗

T = 0GN (Rd)

)
= E

(
F
(
(PN

t,T )0≤t≤T

))
;

(3) (PN
t,T )0≤t≤T is a semimartingale up to time T .

Proof. Let us consider the Wiener space of continuous paths:

(
C([0, T ],Rd), (Xt)0≤t≤T ,XT ,P

)

where:

(1) C([0, T ],Rd) is the space of continuous functions [0, T ] → Rd;

(2) (Xt)t≥0 is the coordinate process defined by Xt(f) = f (t), f ∈
C([0, T ],Rd);

(3) P is the Wiener measure on [0, T ], that is the law of a d-dimensional

standard Brownian motion indexed by the time interval [0, T ];

(4) (Bt)0≤t≤T is the (P-completed) natural filtration of (Bt)0≤t≤T .

Let Q denote the probability measure on XT that is the law of the process

(Bt)t≥0 conditioned by B∗
T = 0GN (Rd). Of course, Q is not equivalent to

the Wiener measure P on XT , but the following equivalence relations take

place

dQ/Xt
=

pT−t

(
X∗

t , 0GN (Rd)

)

pT

(
0GN (Rd), 0GN (Rd)

)dQ/Xt
, t < T. (3.8)

Therefore from Girsanov’s theorem (see Appendix A), under the probability

Q, the process

X i
t −

∫ t

0

Di ln pT−s

(
X∗

s , 0GN (Rd)

)
ds, t < T, i = 1, ..., d,

is a standard Brownian motion. It means that the law of the process

(PN
t,T )0≤t<T that solves equation (3.7) is exactly Q. The properties (1)

and (2) follow readily.
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Let us now prove the semimartingale property up to time T . In the

elliptic case [Bismut (1984a)] deals with the end point singularity of the

Brownian bridge on a Riemannian manifold by proving an estimate of the

logarithmic derivatives of the elliptic heat kernel. Unfortunately, such an

estimate does not seem to be known in the hypoelliptic case, so that we

have to deal by hands with the end point singularity of our equation. To

prove that (PN,∗
t,T )0≤t≤T is a semimartingale up to time T , we need to show

that for any 1 ≤ i ≤ d,

∫ T

0

| Di ln pT−s

(
PN,∗

s,T , 0GN (Rd)

)
| ds < +∞

with probability 1. To prove this, it is actually enough to check that

E

(∫ T

T
2

| Di ln pT−s

(
PN,∗

s,T , 0GN (Rd)

)
| ds
)
< +∞.

Since the processes (PN,∗
T−t,T )0<t≤T and (PN,∗

t,T )0≤t<T have the same law

(they have the same finite dimensional distributions), we have

E

(∫ T

T
2

|Di ln pT−s

(
PN,∗

s,T , 0GN (Rd)

)
|ds
)

=E

(∫ T
2

0

|Di ln ps

(
PN,∗

s,T , 0GN (Rd)

)
|ds
)
.

Using now (3.8), we get

E

(∫ T

T
2

|Di ln pT−s

(
PN,∗

s,T , 0GN (Rd)

)
|ds
)

=E




∫ T

2

0

| Di ln ps

(
B∗

s , 0GN (Rd)

)
| ds

pT
2

(
B∗

T
2

, 0GN (Rd)

)

pT

(
0GN (Rd), 0GN (Rd)

)



 .

Therefore, from the Proposition 2.4 of Chapter 2, it remains then to check

that

E

(∫ T
2

0

| Di ln ps(B
∗
s , 0GN (Rd)) | ds

)
< +∞.

We claim now that

E
(
| Di ln ps(B

∗
s , 0GN (Rd)) |

)
≤ 1

s
E(| Bi

s |).
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Indeed, an integration by parts formula proved in [Driver and Thalmaier

(2001)] (see also [Elworthy and Li (1994)]) says that for any bounded mea-

surable function f ,

E
(
f(B∗

s )(Di ln ps(B
∗
s , 0GN (Rd)))

)
= −1

s
E
(
f(B∗

s )Bi
s

)
.

And the above inequality is proved by taking for the sign function of

Di ln ps(x, 0GN (Rd)).

Therefore,

E

(∫ T
2

0

| Di ln ps(B
∗
s , 0) | ds

)
≤
∫ T

2

0

1

s
E(| Bi

s |)ds ≤ C

∫ T
2

0

ds√
s
< +∞,

which concludes the proof. �

Definition 3.9 The process (PN
t,T )0≤t≤T shall be called the Brownian

loop of depth N .

Example 3.13 The process (P 1
t,T )0≤t≤T is simply the d-dimensional

Brownian bridge from 0 to 0 with length T , that is the solution of the

stochastic differential equation

P 1
t,T = Bt −

∫ t

0

P 1
s,T

T − s
ds.

Observe that this equation can be explicitly solved and leads to the follow-

ing expression

P 1
t,T = (T − t)

∫ t

0

dBs

T − s
.

Example 3.14 The process (P 2
t,T )0≤t≤T is the d-dimensional standard

Brownian motion (Bt)0≤t≤T conditioned by


BT ,
1

2

(∫ T

0

Bi
s ◦ dBj

s −Bj
s ◦ dBi

s

)

1≤i,j≤d



 = 0.

Remark 3.15 Notice that in law,

(PN
t,T )0≤t≤T = (

√
TPN

t
T

,1)0≤t≤T . (3.9)

Consider now on Rn stochastic differential equations of the type

Xt = x0 +

d∑

i=1

∫ t

0

Vi(Xs) ◦ dP i,N
s,T , t ≤ T (3.10)
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where:

(1) x0 ∈ Rn;

(2) V1, ..., Vd are C∞ bounded vector fields on Rn ;

(3) (P 1,N
t,T , ..., P d,N

t,T )0≤t≤T is a d -dimensional N -step Brownian loop from

0 to 0 with length T > 0.

As we already did, we denote by L the Lie algebra generated by the vector

fields Vi’s and for p ≥ 2, by Lp the Lie subalgebra defined by

Lp = {[X,Y ], X ∈ Lp−1, Y ∈ L}.

Moreover if a is a subset of L, we denote

a(x) = {V (x), V ∈ a}, x ∈ Rn.

Proposition 3.6 For every x0 ∈ Rn, there is a unique solution

(Xx0
t )0≤t≤T to (3.10). Moreover there exists a stochastic flow (Φt, 0 ≤

t ≤ T ) of smooth diffeomorphisms Rn → Rn associated to the equations

(3.10).

Proof. We refer to the book [Kunita (1990)], where the questions of exis-

tence and uniqueness of a smooth flow for stochastic differential equations

driven by general continuous semimartingales are treated (cf. Theorem

3.4.1. p. 101 and Theorem 4.6.5. p. 173). �

We consider now the following family of operators (HN
T )T≥0 defined on the

space of compactly supported smooth functions f : Rn → R by

(HN
T f)(x) = E (f(Xx

T )) , x ∈ Rn.

The operator HN
T shall be called the depth N holonomy operator.

Remark 3.16 Of course, the operator HN
T does not satisfy a semi-group

property.

Theorem 3.11 Let f : Rn → R be a smooth, compactly supported func-

tion. In L2,

lim
T→0

HN
T f − f

TN+1
= ∆Nf,

where ∆N is a second order differential operator. It can be written

∆N =

m∑

i=1

Q2
i
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where:

(1)

m =
1

N + 1

∑

k|N+1

µ(k)d
N+1

k ;

(2) Qi ∈ LN+1 is a universal Lie polynomial in V1, ..., Vd which is homo-

geneous of degree N + 1.

Proof. Before we start the proof, let us precise some notations we already

used. If I = (i1, ..., ik) ∈ {1, ..., d}k is a word, we denote | I |= k its length

and by VI the commutator defined by

VI = [Vi1 , [Vi2 , ..., [Vik−1
, Vik

]...].

The group of permutations of the index set {1, ..., k} is denoted Sk. If

σ ∈ Sk, we denote e(σ) the cardinality of the set

{j ∈ {1, ..., k − 1}, σ(j) > σ(j + 1)}.

Finally, we denote

ΛI(P
N
.,T )t =

∑

σ∈Sk

(−1)
e(σ)

k2

(
k − 1

e(σ)

)
∫

0≤t1≤...≤tk≤t

◦dPN,σ−1i1
t1,T ◦ ... ◦ dPN,σ−1ik

tk,T .

Due to the scaling property

(PN
t,T )0≤t≤T = (

√
TPN

t
T

,1)0≤t≤T ,

we can closely follow the proof of Theorem 2.6, Chapter 2, to obtain the

following asymptotic development of f(Xx
T ):

f(Xx
T ) =


exp




2N+2∑

k=1

∑

I=(i1,...,ik)

ΛI(P
N
.,T )TVI


 f


 (x)

+ T
2N+3

2 R2N+3(T, f, x),

where the remainder is bounded in probability when T → 0. By definition

of (PN
t,T )0≤t≤T , we actually have

2N+2∑

k=1

∑

I=(i1,...,ik)

ΛI(P
N
.,T )TVI =

2N+2∑

k=N+1

∑

I=(i1,...,ik)

ΛI(P
N
.,T )TVI ,
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so that

f(Xx
T ) =


exp




2N+2∑

k=N+1

∑

I=(i1,...,ik)

ΛI(P
N
.,T )TVI


 f


 (x)

+ T
2N+3

2 R2N+3(T, f, x).

Therefore,

HN
T f(x) =E




exp




2N+2∑

k=N+1

∑

I=(i1,...,ik)

ΛI(P
N
.,T )TVI


 f


 (x)




+ T
2N+3

2 R̃2N+3(T, f, x),

where

R̃2N+1(T, f, x) = E (R2N+1(T, f, x)) .

Since, by symmetry, we always have

E
(
ΛI(P

N
.,T )T

)
= 0,

we have to go at the order 2 in the asymptotic development of the expo-

nential when T → 0. By neglecting the terms which have order more than

T
2N+3

2 , we obtain

HN
T f(x) =f(x) +

∑

I,J

1

2
E
(
ΛI(P

N
.,T )T ΛJ (PN

.,T )T

)
(VIVJf)(x)

+ T
2N+3

2 R∗
2N+3(T, f, x),

where the remainder term R∗
2N+3(T, f, x) is bounded in L2 when T → 0.

Notice now that, since (P i,N
t,T )0≤t≤T =law (−P i,N

t,T )0≤t≤T , we have

E
(
ΛI(P

N
.,T )T ΛJ(PN

.,T )T

)
= 0,

as soon as I 6= J . Therefore

HN
T f(x) =f(x) +

∑

I=(i1,...,iN+1)

1

2
E
(
ΛI(P

N
.,T )2T

)
(V 2

I f)(x)

+ T
2N+3

2 R∗
2N+3(T, f, x),

which leads to the expected result. �
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Example 3.15 We have

∆0 =
1

2

d∑

i=1

V 2
i ,

and,

∆1 = C
∑

1≤i<j≤d

[Vi, Vj ]
2,

where C is a non negative constant.

Remark 3.17 If LN+1 = 0 then ∆N+1 = 0 and if at some x ∈ Rn,

LN+1(x) = Rn, then ∆N+1 satisfies the Hörmander’s condition at x.

Remark 3.18 The convergence

HN+1
T − Id

TN+1
→T→0 ∆N+1,

also holds in Lp, p ≥ 1.

Theorem 3.12 Assume that LN+1 = 0, then for any solution

(Xx0
t )0≤t≤T of (3.10) we have almost surely Xx0

T = x0. On the other hand,

assume that LN+1(x0) = Rn, then for the solution (Xx0
t )0≤t≤T of (3.10)

the random variable Xx0

T has a smooth density with respect to the Lebesgue

measure of Rn.

Proof. Assume that LN+1 = 0, then a similar argument as those given

in the proof of Theorem 2.5 in Chapter 2, there exists a smooth map

F : Rn × GN(Rd) → Rn

such that, for x0 ∈ Rn, the solution (Xx0
t )0≤t≤T of the SDE (3.10) can be

written

Xx0
t = F (x0, Q

N
t,T ),

which implies immediately the expected result.

Assume now that LN+1(x0) = Rn. Let us consider the solution (Zt)t≥0

of the following stochastic differential equation:

Zt = x0 +

d∑

i=1

∫ t

0

Vi(Zs) ◦ dBi
s, t ≥ 0,
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where (B1
t , ..., B

d
t )t≥0 is a d-dimensional standard Brownian motion. From

theorem 3.3, the random variable

(ZT , B
∗
T )

has a smooth density with respect to any Lebesgue measure on Rn ×
GN (Rd). It implies the existence of a smooth function p : Rn → R such

that for every bounded measurable function f : Rn → R

E(f(ZT ) | B∗
T = 0) =

∫

Rn

f(y)p(y)dy.

Now, since in law the process (PN
t,T )0≤t≤T , is identical to the Brownian

motion (Bt)0≤t≤T conditioned by B∗
T = 0, the function p is actually exactly

the density of the random variable Xx0

T where (Xx0
t )0≤t≤T is the solution

of (3.10) with initial condition x0. �

Remark 3.19 In the case N = 1, we can give another proof of the exis-

tence of a density under the assumption L2(x0) = Rn. Indeed, let us recall

that

P 1
t,T = (T − t)

∫ t

0

dBs

T − s
, t < T, and PT,T = 0.

Using this formula, it is not difficult to prove that if (Xt)0≤t≤T is a solution

of (3.10), then XT ∈ D∞ (see Appendix A, the section about Malliavin

calculus for the definition of this space). Moreover, a direct computation

shows that for any 0 ≤ s ≤ T ,

DsXT = J0→T

(
J−1

0→sσ(Xs) −
1

T − s

∫ T

s

J−1
0→uσ(Xu)du

)
,

where (J0→t)0≤t≤T is the first variation process defined by

J0→t =
∂Φt

∂x
,

and σ the n× d matrix field σ = (V1, ..., Vd). From this, we can deduce that

the Malliavin matrix of XT must be invertible. Indeed, if not, we could find

a non zero vector h ∈ Rd such that DsXT · h = 0 for 0 ≤ s ≤ T , this leads

to the conclusion that (J−1
0→sσ(Xs) · h)0≤s≤T must be constant. An itera-

tive application of Itô’s formula, as performed in the proof of Hörmander’s

theorem given at the beginning of the chapter, shows then that h must be

orthogonal to L2(x0) which leads to the expected contradiction. Thus, XT

admits a density with respect to the Lebesgue measure.
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Remark 3.20 In general, the only condition LN+1(x0) = 0 is not enough

to conclude that for the solution (Xx0
t )0≤t≤T of (3.10) we have almost surely

Xx0

T = x0. For instance for N = 2, consider in dimension 2,

V1 =

(
1

0

)
, and V2 =

(
0

f (x)

)
,

where f is a smooth function whose Taylor development at 0 is 0 (e.g.

f(x) = e−
1

x2 1x>0). Nevertheless, if the vector fields Vi’s are assumed to be

analytic, it is true that LN+1(x0) = 0 implies that almost surely Xx0

T = x0.

In the case of the existence of a density for Xx0

T , we can moreover give

an equivalent of this density when the length of the loop tends to 0. To

this end, let us precise some notations.

We set for x ∈ Rn and k ≥ N ,

Uk(x) = span{VI , N ≤| I |≤ k}.

In the case where LN+1(x) = Rn, if k is big enough then Uk(x) = Rn. We

denote d(x) the smallest integer k ≥ N + 1 for which this equality holds

and define the graded dimension

dimH LN+1(x) :=

d(x)∑

k=N+1

k (dimUk(x) − dimUk−1(x)) .

Theorem 3.13 Assume that for any x ∈ Rn, LN+1(x) = Rn. Let us

denote pT (x) the density of Xx
T with respect to the Lebesgue measure. We

have

pT (x) ∼T→0
m(x)

T
dimH LN+1(x)

2

,

where m is a smooth non negative function.

Proof. Let us, once time again, consider the solution (Zx
t )t≥0 of the

following stochastic differential equation:

Zx
t = x+

d∑

i=1

∫ t

0

Vi(Z
x
s ) ◦ dBi

s, t ≥ 0,

where (B1
t , ..., B

d
t )t≥0 is a d-dimensional standard Brownian motion. From

Corollary 3.2 , the density at (x, 0) of the random variable (Zx
T , B

∗
T ) behaves
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when T goes to zero like

m̃(x)

T
dimH GN (Rd)+dimH LN+1(x)

2

,

where dimH GN(Rd) =
∑N

j=1 j dimVj is the graded dimension of GN (Rd),

and m̃ a smooth non negative function. Always from Corollary 3.2, the

density of the random variable YT behaves when T goes to zero like

C

T
dimH GN (Rd)

2

,

where C is a non negative constant. The conclusion follows readily. �
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Appendix A

Basic Stochastic Calculus

In this Appendix, we review briefly the basic theory of stochastic processes

and stochastic differential equations. The stochastic integration is a natu-

ral, easy and fruitful integration theory which is due to [Itô (1944)]. For a

much more complete exposition of the stochastic calculus we refer to [Del-

lacherie and Meyer (1976)], [McKean (1969)], [Protter (2004)], and [Revuz

and Yor (1999)]. For further reading on stochastic differential equations we

refer to [Elworthy (1982)], [Ikeda and Watanabe (1989)], [Kunita (1990)],
[Stroock (1982)], and [Stroock and Varadhan (1979)]. We assume some

familiarity with basic probability theory.

A.1 Stochastic processes and Brownian motion

Let (Ω, (Ft)t≥0,F ,P) be a filtered probability space which satisfies the usual

conditions, that is:

(1) (Ft)t≥0 is a filtration, i.e. an increasing family of sub-σ-fields of F ;

(2) for any t ≥ 0, Ft is complete with respect to P, i.e. every subset of a

set of measure zero is contained in Ft;

(3) (Ft)t≥0 is right continuous, i.e. for any t ≥ 0,

Ft =
⋂

s>t

Fs.

A stochastic process (Xt)t≥0 on (Ω, (Ft)t≥0,F ,P) is an application

R≥0 × Ω → R

(t, ω) → Xt(ω),

97
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which is measurable with respect to B(R≥0) ⊗ F . The process (Xt)t≥0 is

said to be adapted (with respect to the filtration (Ft)t≥0) if for every t ≥ 0,

Xt is Ft-measurable. It is said to be continuous if for almost every ω ∈ Ω,

the function t→ Xt(ω) is continuous. A stochastic process (X̃t)t≥0 is called

a modification of (Xt)t≥0 if for every t ≥ 0,

P

(
Xt = X̃t

)
= 1.

The following theorem known as Kolmogorov’s continuity criterion is fun-

damental.

Theorem A.1 Let α, ε, c > 0. If a process (Xt)t≥0 satisfies for every

s, t ≥ 0,

E (| Xt −Xs |α) ≤ c | t− s |1+ε,

then there exists a modification of (Xt)t≥0 which is a continuous process.

One of the most important examples of stochastic process is the Brownian

motion. A process (Bt)t≥0 defined on (Ω, (Ft)t≥0,P) is said to be a standard

Brownian motion with respect to the filtration (Ft)t≥0 if:

(1) B0 = 0 a.s.;

(2) B1 =law N (0, 1);

(3) (Bt)t≥0 is F -adapted;

(4) For any t > s ≥ 0,

Bt −Bs =law Bt−s;

(5) For any t > s ≥ 0, Bt −Bs is independent of Fs.

If a process is a Brownian motion with respect to its own filtration, we

simply say that it is a standard Brownian motion, without mentioning the

underlying filtration. A d-dimensional process (Bt)t≥0 = (B1
t , ..., B

d
t )t≥0

is said to be a d-dimensional standard Brownian motion if the processes

(B1
t )t≥0, ..., (B

d
t )t≥0 are independent standard Brownian motions.

A standard Brownian motion (Bt)t≥0 is a Gaussian process, that is for

every n ∈ N∗, and 0 ≤ t1 ≤ ... ≤ tn, the random variable

(Bt1 , ..., Btn
)

is Gaussian. The mean function of (Bt)t≥0 is

E(Bt) = 0,
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and its covariance function is

E(BsBt) = inf(s, t).

It is easy to show, thanks to Kolmogorov’s continuity criterion, that it

is always possible to find a continuous modification of a standard Brownian

motion. Of course, we always work with this continuous modification. The

law of a standard Brownian motion, which therefore lives on the space of

continuous functions R≥0 → R is called the Wiener measure. If (Bt)t≥0 is

a standard Brownian motion, then the following properties hold:

(1) For every c > 0, (Bct)t≥0 =law (
√
cBt)t≥0;

(2) (tB 1
t
)t≥0 =law (Bt)t≥0;

(3) For almost every ω ∈ Ω, the path t → Bt(ω) is nowhere differentiable

and locally Hölder continuous of order α for every α < 1
2 ;

(4) For every subdivision 0 = t0 ≤ · · · ≤ tn = t whose mesh tends to 0,

almost surely we have

lim
n→+∞

n−1∑

i=0

(
Bti+1 −Bti

)2
= t.

A.2 Markov processes

Intuitively, a Markov process (Xt)t≥0 defined on a filtered probability space

(Ω, (Ft)t≥0,F ,P) is a process without memory.

Definition A.1 A transition function {Pt, t ≥ 0} on R is a family of

kernels Pt : R × B(R) → [0, 1] such that:

(1) For t ≥ 0 and x ∈ R, Pt(x, ·) is a Borel measure on B(R) with Pt(x,R) ≤
1;

(2) For t ≥ 0 and A ∈ B(R), the function x→ Pt(x,A) is measurable with

respect to B(R);

(3) For s, t ≥ 0, x ∈ R and A ∈ B(R),

Pt+s(x,A) =

∫

R

Pt(y,A)Ps(x, dy); (A.1)

Equation (A.1) is called the Chapman-Kolmogorov equation. We may

equally think of the transition function as being a family (Pt)t≥0 of positive

bounded operators of norm less or equal to 1 on the space of bounded Borel
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functions f : R → R defined by

(Ptf)(x) =

∫

R

f(y)Pt(x, dy).

Observe that the Chapman-Kolmogorov equation is equivalent to the semi-

group property

Pt+s = PtPs.

Definition A.2 An adapted continuous process (Xt)t≥0 defined on

(Ω, (Ft)t≥0,F ,P) is said to be a Markov process (with respect to the fil-

tration (Ft)t≥0) if there exists a transition function (Pt)t≥0 such that for

every bounded Borel functions f : R → R, 0 ≤ s ≤ t,

E (f(Xs+t) | Fs) = (Ptf)(Xs).

In the theory of stochastic processes, it is often useful to deal with random

times. A real valued positive random variable T is said to be a stopping

time with respect to the filtration (Ft)t≥0 if for any t ≥ 0,

{T ≤ t} ∈ Ft.

If T is a stopping time the smallest σ-field which contains all the events

{T ≤ t}, t ≥ 0, is denoted FT .

Definition A.3 An adapted continuous process (Xt)t≥0 defined on

(Ω, (Ft)t≥0,F ,P) is said to be a strong Markov process (with respect to

the filtration (Ft)t≥0) if there exists a transition function (Pt)t≥0 such that

for every bounded Borel functions f : R → R, t ≥ 0,

E (f(XS+t) | FS) = (Ptf)(XS),

where S is any stopping time that satisfies almost surely 0 ≤ S ≤ t.

Observe that a strong Markov process is always a Markov process and

that a standard Brownian motion is a strong Markov process. For further

details on Markov processes, we refer to Chapter III of [Rogers and Williams

(2000)].

A.3 Martingales

Consider an adapted and continuous process (Mt)t≥0 defined on a filtered

probability space (Ω, (Ft)t≥0,F ,P).
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Definition A.4 The process (Mt)t≥0 is said to be a martingale (with

respect to the filtration (Ft)t≥0) if:

(1) For t ≥ 0, E (|Mt |) < +∞;

(2) For 0 ≤ s ≤ t, E (Mt | Fs) = Ms.

For instance a standard Brownian motion is a martingale. For martingales,

we have the following proposition, which is known as the stopping theorem.

Proposition A.1 The following properties are equivalent:

(1) The process (Mt)t≥0 is a martingale;

(2) For any bounded stopping time T , E(MT ) = E(M0);

(3) For any pair of bounded stopping times S and T , with S ≤ T ,

E (MT | FS) = MS.

Actually, if T is a bounded stopping time, then the process (Mt∧T )t≥0 is

also a martingale.

A martingale (Mt)t≥0 is said to be square integrable if for t ≥ 0,

E
(
M2

t

)
< +∞. In that case, from Jensen’s inequality the function

t→ E
(
M2

t

)
is increasing. We also have the so-called Doob’s inequality

E

(
sup
t≥0

M2
t

)
≤ 4 sup

t≥0
E
(
M2

t

)
,

which is one of the cornerstone of the stochastic integration. Observe there-

fore that if supt≥0 E
(
M2

t

)
< +∞, the martingale (Mt)t≥0 is uniformly in-

tegrable and converges in L2 to a square integrable random variable M∞
which satisfies

E (M∞ | Ft) = Mt, t ≥ 0.

If (Mt)t≥0 is a square integrable martingale, there exists a unique increasing

process denoted (〈M〉t)t≥0 which satisfies:

(1) 〈M〉0 = 0;

(2) The process (M2
t − 〈M〉t)t≥0 is a martingale.

This increasing process (〈M〉t)t≥0 is called the quadratic variation of the

martingale (Mt)t≥0. This terminology comes from the following property.

If 0 = t0 ≤ t1 ≤ · · · ≤ tn = t is a subdivision of the time interval [0, t]
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whose mesh tends to 0, then in probability

lim
n→+∞

n−1∑

i=0

(
Mti+1 −Mti

)2
= 〈M〉t.

For technical reasons (localization procedures), we often have to consider a

wider class than martingales.

Definition A.5 The process (Mt)t≥0 is said to be a local martingale

(with respect to the filtration (Ft)t≥0) if there exists a sequence (Tn)n≥0 of

stopping times such that:

(1) The sequence (Tn)n≥0 is increasing and limn→+∞ Tn = +∞ almost

surely;

(2) For every n ≥ 1, the process (Mt∧Tn
)t≥0 is a uniformly integrable

martingale with respect to the filtration (Ft)t≥0.

A martingale is always a local martingale but the converse is not true.

Nevertheless, a local martingale (Mt)t≥0 such that for every t ≥ 0,

E

(
sup
s≤t

|Ms |
)
< +∞,

is a martingale. If (Mt)t≥0 is a local martingale, there still exists a unique

increasing process denoted (〈M〉t)t≥0 which satisfies:

(1) 〈M〉0 = 0;

(2) The process (M2
t − 〈M〉t)t≥0 is a local martingale.

This increasing process (〈M〉t)t≥0 is called the quadratic variation of the

local martingale (Mt)t≥0. By polarization, it is easily seen that, more

generally, if (Mt)t≥0 and (Nt)t≥0 are two continuous local martingales,

then there exists a unique continuous process denoted (〈M,N〉t)t≥0 and

called the quadratic covariation of (Mt)t≥0 and (Nt)t≥0 which satisfies:

(1) 〈M,N〉0 = 0;

(2) The process (MtNt − 〈M,N〉t)t≥0 is a local martingale.

Before we turn to the theory of stochastic integration, we conclude this

section with Lévy’s characterization of Brownian motion.

Proposition A.2 Let (Mt)t≥0 be a d-dimensional continuous local mar-

tingale such that M0 = 0 and

〈M i,M i〉t = t, 〈M i,M j〉t = 0 if i 6= j.
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Then (Mt)t≥0 is a standard Brownian motion.

A.4 Stochastic integration

Let (Ω, (Ft)t≥0,F ,P) be a filtered probability space which satisfies the usual

conditions specified before. We aim now at defining an integral
∫ t

0
HsdMs

where (Mt)t≥0 is an adapted continuous square integrable martingale such

that supt≥0 E
(
M2

t

)
< +∞ and (Ht)t≥0 an adapted process which shall be

in a good class. Observe that such an integral could not be defined triv-

ially since the Young’s integration theory does not cover the integration

against paths which are less than 1
2 -Hölder continuous. First, we define the

class of integrands. The predictable σ-field P associated with the filtra-

tion (Ft)t≥0 is the σ-field generated on R≥0 × Ω by the space of indicator

functions 1]S,T ], where S and T are two stopping times such that S ≤ T .

An adapted stochastic process (Ht)t≥0 is said to be predictable if the ap-

plication (t, ω) → Ht(ω) is measurable with respect to P . Observe that a

continuous adapted process is predictable.

Let us first assume that (Ht)t≥0 is a predictable elementary process that

can be written

Ht =

n−1∑

i=1

Hi1]Ti,Ti+1](t)

where Hi is a FTi
measurable bounded random variable, and where

(Ti)1≤i≤n is a finite increasing sequence of stopping times. In that case, a

natural definition for
∫ t

0 HsdMs is

∫ t

0

HsdMs =

n−1∑

i=1

Hi

(
Mt∧Ti+1 −Mt∧Ti

)
.

Then, we observe that the process
(∫ t

0 HsdMs

)

t≥0
is a bounded martingale

which satisfies furthermore from Doob’s inequality

E

(
sup
t≥0

(∫ t

0

HsdMs

)2
)

≤ 4 ‖ H ‖2
∞ E(M2

∞).

We also note that

E

((∫ t

0

HsdMs

)2
)

= E

(
n−1∑

i=1

Hi

(
Mt∧Ti+1 −Mt∧Ti

)2
)
.
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Assume now that (Ht)t≥0 is a bounded continuous adapted process. To de-

fine
∫ t

0 HsdMs, the idea is of course to approximate (Ht)t≥0 with elemen-

tary processes (Hp
t )t≥0 and to check the convergence of

(∫ t

0
Hp

s dMs

)

t≥0

with respect to a suitable norm. Precisely, let us define for any p ∈ N∗, the

following stopping times:

T p
0 = 0

T p
1 = inf

{
t > 0, | Ht |≥

1

p

}
,

and by iteration

T p
n+1 = inf

{
t > T p

n , | Ht −HT p
n
|≥ 1

p

}
.

We now define

Hp
t =

n−1∑

i=1

HT p

i
1]T p

i
,T p

i+1]
(t).

For this sequence of processes (Hp
t )t≥0, it easy to show that

E

(
sup
t≥0

(∫ t

0

(Hp
s −Hq

s )dMs

)2
)

→p,q→+∞ 0.

From this, we can deduce that there exists a continuous martingale denoted(∫ t

0
HsdMs

)

t≥0
such that

∫ t

0

HsdMs = lim
p→+∞

∫ t

0

Hp
s dMs

uniformly for t on compact sets. We furthermore have

E

(
sup
t≥0

(∫ t

0

HsdMs

)2
)

≤ 4 ‖ H ‖2
∞ E(M2

∞).

and

E

((∫ t

0

HsdMs

)2
)

= E

(∫ t

0

H2
sd〈M〉s

)
.

Now, by localization, it is not difficult to extend naturally the definition of∫ t

0 HsdMs in the general case where:
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(1) (Mt)t≥0 is a semimartingale, that is, (Mt)t≥0 can be written

Mt = At +Nt,

where (At)t≥0 is a bounded variation process and (Nt)t≥0 is a local

martingale;

(2) (Ht)t≥0 is a locally bounded predictable process.

In this setting, we have:

∫ t

0

HsdMs =

∫ t

0

HsdAs +

∫ t

0

HsdNs.

Observe that, since (At)t≥0 is a bounded variation process, the in-

tegral
∫ t

0
HsdAs is simply a Riemann-Stieltjes integral. The process(∫ t

0
HsdNs

)

t≥0
is a local martingale.

The class of semimartingales appears then as a good class of integrators

in the theory of stochastic integration. It can be shown that this is actually

the widest possible class if we wish to obtain a natural integration theory

(see Dellacherie-Meyer [Dellacherie and Meyer (1976)] or Protter [Protter

(2004)] for a precise statement). The decomposition of a semimartingale

(Mt)t≥0 under the form

Mt = At +Nt,

is essentially unique under the condition N0 = 0. The process (At)t≥0 is

called the bounded variation part of (Mt)t≥0. The process (Nt)t≥0 is called

the local martingale part of (Mt)t≥0. If (M1
t )t≥0 and (M2

t )t≥0 are two semi-

martingales, then we define the quadratic covariation
(
〈M1,M2〉t

)
t≥0

of

(M1
t )t≥0 and (M2

t )t≥0 as being
(
〈N1, N2〉t

)
t≥0

where (N1
t )t≥0 and (N2

t )t≥0

are the local martingale parts.

Throughout this book we shall only deal with continuous processes so

that in the sequel, we shall often omit to precise the continuity of the

processes which will be considered. Moreover, we shall preferably use

Stratonovitch’s integration rather than Itô’s integration. If (Nt)0≤t≤T ,

T > 0, is an F -adapted real valued local martingale and if (Θt)0≤t≤T

is an F -adapted continuous process satisfying E

(∫ T

0
Θ2

td〈N〉t
)
, then by

definition,

∫ T

0

Θt ◦ dNt =

∫ T

0

Θt · dNt +
1

2
〈Θ, N〉T ,
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where:

(1)
∫ T

0 Θt ◦ dNt is the Stratonovitch integral of (Θt)0≤t≤T against

(Nt)0≤t≤T ;

(2)
∫ T

0
Θt · dNt is the Itô integral of (Θt)0≤t≤T against (Nt)0≤t≤T ;

(3) 〈Θ, N〉T is the quadratic covariation at time T between (Θt)0≤t≤T and

(Nt)0≤t≤T .

A.5 Itô’s formula

The Itô’s formula is certainly the most important formula of stochastic

calculus.

Theorem A.2 Let (Xt)t≥0 =
(
X1

t , · · · , Xn
t

)
t≥0

be a n- dimensional con-

tinuous semimartingale. Let now f : Rn → R be a C2 function. We have

f(Xt) = f(X0) +
n∑

i=1

∫ t

0

∂f

∂xi
(Xs)dX

i
s +

1

2

n∑

i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs)d〈X i, Xj〉s

= f(X0) +

n∑

i=1

∫ t

0

∂f

∂xi
(Xs) ◦ dX i

s.

A.6 Girsanov’s theorem

We give here the most important theorem concerning the impact of a change

of probability measure on the class of semimartingales. Let C(R≥0,R
d)

denote the space of continuous functions R≥0 → Rd. Let Xs, s ≥ 0, denote

the coordinate mappings, that is

Xs(ω) = ω(s), ω ∈ C(R≥0,R
d).

Set now B0
t = σ(Xs, s ≤ t) and consider on C(R≥0,R

d) the Wiener measure

P, that is the law of a d-dimensional standard Brownian motion. Let finally

Bt be the usual P-augmentation of B0
t and

B∞ = ∨t≥0Bt.

The filtered probability space

(
C(R≥0,R

d), (Bt)t≥0,B∞,P
)
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is called the Wiener space. Observe that, by definition of P, the process

(Xt)t≥0 is under P a d-dimensional standard Brownian motion. We have

the following theorem, referred to as the Girsanov’s theorem.

Theorem A.3

(1) Let Q be a probability measure on
(
C(R≥0,R

d),B∞
)

which is equivalent

to P. Let us denote by D the density of Q with respect to P. Then there

exists an adapted continuous Rd-valued process (Θt)t≥0 such that

E (D | Bt) = exp

(∫ t

0

ΘsdXs −
1

2

∫ t

0

‖ Θs ‖2 ds

)
,

and under Q,

X̃t = Xt −
∫ t

0

Θsds

is a standard Brownian motion.

(2) Let (Θt)t≥0 be an adapted continuous Rd-valued process such that the

process

Zt = exp

(∫ t

0

ΘsdXs −
1

2

∫ t

0

‖ Θs ‖2 ds

)
, t ≥ 0,

is a uniformly integrable martingale under P. Define a probability mea-

sure on
(
C(R≥0,R

d),B∞
)

by:

dQ = Z∞P.

Then, under Q, the process

Xt −
∫ t

0

Θsds

is a standard Brownian motion.

Observe that the process

Zt = exp

(∫ t

0

ΘsdXs −
1

2

∫ t

0

‖ Θs ‖2 ds

)
, t ≥ 0,

satisfies the following equation

Zt = 1 +

∫ t

0

ZsΘsdXs.
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It can be shown that sufficient conditions which ensure that (Zt)t≥0 is a

uniformly integrable martingale are the following:

(1) For any t ≥ 0,

E(Zt) = 1;

(2) For any t ≥ 0,

E

(
exp

(
1

2

∫ t

0

‖ Θs ‖2 ds

))
< +∞.

A.7 Stochastic differential equations

Let (Ω, (Ft)t≥0,P) be a filtered probability space which satisfies the usual

conditions. Let

(Mt)t≥0 = (M1
t , ...,M

d
t )t≥0

denote a continuous d-dimensional semimartingale that is adapted to the

filtration (Ft)t≥0. Consider now d smooth vector fields Vi : Rn → Rn,

n ≥ 1, i = 1, ..., d. The fundamental theorem for the existence and the

uniqueness of solutions for stochastic differential equations is the following:

Theorem A.4 Let x0 ∈ Rn. On (Ω, (Ft)t≥0,P), there exists a unique

continuous process (Xx0
t )t≥0 adapted to the natural filtration of (Mt)t≥0

completed with respect to P and such that for t ≥ 0,

Xx0
t = x0 +

d∑

i=1

∫ t

0

Vi(X
x0
s ) ◦ dM i

s. (A.2)

The process (Xx0
t )t≥0 is called the solution of the stochastic differential

equation (A.2).

In the sequel the stochastic differential equation (A.2) shall be denoted

SDE (x0, (Vi)1≤i≤d, (Mt)t≥0). Observe that SDE (x0, (Vi)1≤i≤d, (Mt)t≥0)

is written in Stratonovitch’s form. Thanks to Itô’s formula the correspond-

ing Itô’s formulation is

Xx0
t = x0 +

1

2

d∑

i,j=1

∫ t

0

∇Vi
Vj(X

x0
s )d〈M i

s,M
j
s 〉 +

d∑

i=1

∫ t

0

Vi(X
x0
s )dM i

s,
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where for 1 ≤ i, j ≤ d, ∇Vi
Vj is the vector field given by

∇Vi
Vj(x) =

n∑

k=1

(
n∑

l=1

vk
l (x)

∂vj
l

∂xl
(x)

)
∂

∂xk
, x ∈ Rn.

An important point is that the solution (Xx0
t )t≥0 of (A.2) is a predictable

functional of (Mt)t≥0. Let us precise what it exactly means. Let C(R≥0,R
d)

denote the space of continuous functions R≥0 → Rd. If w(s), s ≥ 0, denote

the coordinate mappings, we set Bt = σ(w(s), s ≤ t). A function F :

C(R≥0,R
d) → Rn, is said to be a predictable functional if it is predictable

as a process defined on C(R≥0,R
d) with respect to the filtration (Bt)t≥0.

So, with this terminology, saying that (Xx0
t )t≥0 is a predictable functional

of (Mt)t≥0 means that there exists a predictable functional F satisfying for

any t ≥ 0,

Xx0
t = F ((Ms)0≤s≤t).

We mention that in general the functional F can not be chosen continuous

in the topology of uniform convergence on compact sets (see Section 2.5 of

Chapter 2 on the rough paths theory for a discussion about this continuity

question). The essential advantage of Stratonovitch’s formulation is the

following form for Itô’s formula.

Proposition A.3 Let f : Rn → R be a C2 function and let (Xx0
t )t≥0

denote the solution of SDE (x0, (Vi)1≤i≤d, (Mt)t≥0). We have for t ≥ 0,

f(Xx0
t ) = f(x0) +

d∑

i=1

∫ t

0

(Vif)(Xx0
s ) ◦ dM i

s.

A.8 Diffusions and partial differential equations

One of the main uses of the theory of stochastic differential equations is

to construct and study diffusions. This construction can be performed

when the driving semimartingale (Mt)t≥0 is a standard Brownian mo-

tion (Bt)t≥0. More precisely, solving the stochastic differential equation

SDE (x0, (Vi)1≤i≤d, (Bt)t≥0) is a way to canonically associate, on a given

probability space, a stochastic process with the second order differential

operator

1

2

d∑

i=1

V 2
i .
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Indeed, as a direct consequence of Itô’s formula, we get:

Proposition A.4 Let x0 ∈ Rn and let (Xx0
t )t≥0 denote the solution

of SDE (x0, (Vi)1≤i≤d, (Bt)t≥0). The process (Xx0
t )t≥0 enjoys the strong

Markov property with respect to the natural filtration of (Bt)t≥0. Further-

more for any smooth function f : Rn → R which is compactly supported,

the process
(
f(Xx0

t ) −
∫ t

0

(Lf)(Xx0
s )ds

)

t≥0

is a martingale with respect to the natural filtration of (Bt)t≥0, where

L =
1

2

d∑

i=1

V 2
i

is the so-called infinitesimal generator of (Xx0
t )t≥0.

As a consequence of this proposition, the transition function associated

with the Markov process (Xx0
t )t≥0 is the semigroup generated by L, that is

Pt = etL.

Therefore, for every x0 ∈ Rn and every smooth function f : Rn → R which

is compactly supported,

E (f(Xx0
t )) =

(
etLf

)
(x0).

It is possible to extend the last formula by adding to L a potential: this is

the famous Feynman-Kac formula.

Proposition A.5 Let V : Rn → R be a bounded and continuous function

and let f : Rn → R be a smooth function which is compactly supported,

then for every x0 ∈ Rn,

E

(
f(Xx0

t )e−
R

t

0
V (Xx0

s )ds
)

=
(
et(L−V )f

)
(x0),

where (Xx0
t )t≥0 is the solution of SDE (x0, (Vi)1≤i≤d, (Bt)t≥0).

A.9 Stochastic flows

As in the theory of ordinary differential equations, in the theory of

stochastic differential equations, this is fruitful to look at the solution of

SDE (x0, (Vi)1≤i≤d, (Mt)t≥0) as a function of the initial condition x0.
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Theorem A.5 Let (Mt)t≥0 be a continuous d-dimensional F-adapted

semimartingale. On (Ω, (Ft)t≥0,P), there exists a unique jointly measurable

continuous random field (Φt(x))t≥0,x∈Rn such that:

(1) Almost surely, the map Φt : Rn → Rn is a diffeomorphism for any

t ≥ 0;

(2) For t ≥ 0 and x ∈ Rn,

Φt(x) = x+

d∑

i=1

∫ t

0

Vi(Φs(x)) ◦ dM i
s.

We call (Φt)t≥0 the stochastic flow associated with the above stochastic

differential equation.

There is a nice Itô’s formula for the action of stochastic flows on smooth

tensor fields (we refer to Appendix B for the definitions of the tensor fields

and of the Lie derivative).

Proposition A.6 Let K be a smooth tensor field on Rn and let (Φt)t≥0

denote the stochastic flow associated with SDE (x0, (Vi)1≤i≤d, (Mt)t≥0).

We have for t ≥ 0 and x ∈ Rn,

(Φ∗
tK)(x) = K(x) +

d∑

i=1

∫ t

0

(Φ∗
sLVi

K) (x) ◦ dM i
s.

A.10 Malliavin calculus

In this section, we introduce the basic tools of Malliavin calculus which are

used in the proof of Hörmander’s theorem. For further details, we refer to
[Nualart (1995)].

Let us consider the Wiener space of continuous paths:

W⊗d =
(
C([0, 1],Rd), (Bt)0≤t≤1,B1,P

)

where:

(1) C([0, 1],Rd) is the space of continuous functions [0, 1] → Rd;

(2) (Bt)t≥0 is the coordinate process defined by Bt(f) = f (t), f ∈
C([0, 1],Rd);

(3) P is the Wiener measure on [0, 1], that is the law of a d-dimensional

standard Brownian motion indexed by the time interval [0, 1];

(4) (Bt)0≤t≤1 is the (P-completed) natural filtration of (Bt)0≤t≤1.
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A B1 measurable real valued random variable F is said to be cylindric if it

can be written

F = f

(∫ 1

0

h1
sdBs, ...,

∫ 1

0

hn
s dBs

)

where hi ∈ L2([0, 1],Rd) and f : Rn → R is a C∞ bounded function. The

set of cylindric random variables is denoted S.

The derivative of F ∈ S is the Rd valued stochastic process (DtF )0≤t≤1

given by

DtF =
n∑

i=1

hi(t)
∂f

∂xi

(∫ 1

0

h1
sdBs, ...,

∫ 1

0

hn
s dBs.

)
.

More generally, we can introduce iterated derivatives. If F ∈ S, we set

Dk
t1,...,tk

F = Dt1 ...Dtk
F.

We can consider DkF as an element of L2
(
C([0, 1],Rd),L2([0, 1]k,Rd))

)
;

namely, DkF is a random process indexed by [0, 1]k. For any p ≥ 1, the

operator Dk is closable from S into Lp
(
C([0, 1],Rd),L2([0, 1]k,Rd))

)
.

We denote Dk,p the closure of the class of cylindric random variables

with respect to the norm

‖F‖k,p =



E (F p) +

k∑

j=1

E

(∥∥DjF
∥∥p

L2([0,1]j ,Rd)

)




1
p

,

and

D∞ =
⋂

p≥1

⋂

k≥1

Dk,p.

We have the following key result which makes Malliavin calculus so useful

when one want to study the existence of densities for random variables.

Theorem A.6 Let F = (F1, ..., Fn) be a B1 measurable random vector

such that:

(1) for every i = 1, ..., n, Fi ∈ D∞;

(2) the matrix

Γ =

(∫ 1

0

〈DsF
i,DsF

j〉Rdds

)

1≤i,j≤n

is invertible.
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Then F has a density with respect to the Lebesgue measure. If moreover,

for every p > 1,

E

(
1

| det Γ |p
)
< +∞,

then this density is smooth.

Remark A.1 The matrix Γ is often called the Malliavin matrix of the

random vector F .

Of course, this result is only useful if the class D∞ is big enough to contain

interesting random variables.

Theorem A.7 Let (Xx
t )t≥0 denote the solution of the stochastic differ-

ential equation

Xx
t = x+

d∑

i=1

∫ t

0

Vi(X
x0
s ) ◦ dBi

s. (A.3)

Then, for every i = 1, ..., n, X i
1 ∈ D∞. Moreover,

D
j
tX1 = J0→1J

−1
0→tVj(Xt), j = 1, ..., d, 0 ≤ t ≤ 1,

where (J0→t)t≥0 is the first variation process defined by

J0→t =
∂Xx

t

∂x
,

and where D
j
tX

i
1 is the j-th component of DtX

i
1.

A.11 Stochastic calculus on manifolds

Let M be a smooth connected manifold. A (continuous) M-valued process

(Xt)t≥0 is said to be a semimartingale if for every smooth function f : M →
R the process (f(Xt))t≥0 is a real semimartingale. It is interesting to note

that to define the notion of semimartingale on a manifold, no additional

structure than the differentiability structure is required. But to define the

notion of martingale on a manifold, we have to endow the manifold with

an affine connection. On this point we shall not go into details since the

notion of martingales on a manifold is not needed in this book, but for

further details we refer to [Emery (1989)] and [Emery (2000)].
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On the manifold M, it is possible to give a sense to stochastic differential

equations of the type

Xx0
t = x0 +

d∑

i=1

∫ t

0

Vi(X
x0
s ) ◦ dM i

s, t ≥ 0 (A.4)

where:

(1) x0 ∈ M;

(2) V1, ..., Vd are C∞ bounded vector fields on M;

(3) ◦ denotes Stratonovitch integration;

(4) (M1
t , ...,M

d
t )0≤t≤T is a Rd-valued continuous semimartingale.

Indeed, we shall say that a M-valued process is solution of (A.4) if for every

smooth function f : M → R,

f(Xx0
t ) = f(x0) +

d∑

i=1

∫ t

0

(Vif)(Xx0
s ) ◦ dM i

s, t ≥ 0.

In this setting, many results given in Sections A7, A8 and A9 remain true.

In particular, when the driving semimartingale (Mt)t≥0 is a linear Brown-

ian motion, then the solution of equation (A.4) is a Markov process with

infinitesimal generator

1

2

(
∑

i=1

V 2
i

)
.

Let us now assume that the manifold M is moreover endowed with a

Riemannian structure (see Appendix B). In that case, there is a natural

and canonical second-order elliptic operator defined on M: The Laplace-

Beltrami operator ∆M.

A continuous M-valued process (Bt)t≥0 is said to be a Brownian motion

on M if it is a Markov process with generator 1
2∆M. It is equivalent to ask

that for every C∞ bounded function M → R, the process

(
f (Bt) −

1

2

∫ t

0

(∆Mf) (Bs) ds

)

t≥0

is a martingale.

It may happen that a Brownian motion on a manifold explodes, meaning

that the best we can do is to find a process (Bt)t≥0 together with a stopping
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time τ such that for every C∞ bounded function M → R, the process
(
f
(
Binf(t,τ)

)
− 1

2

∫ inf(t,τ)

0

(∆Mf) (Bs) ds

)

t≥0

is a martingale. Such phenomenon can not occur if the manifold M is

compact.

Observe that in general the operator ∆M can not globally be written

under the form

V0 +

d∑

i=1

V 2
i ,

where V0, V1, ..., Vd are smooth vector fields on M. Therefore, in full gen-

erality, we can not construct Brownian motions on a Riemannian manifold

by solving stochastic differential equations on the manifold. An intrinsic

way to construct Brownian motions on a manifold by solving a stochastic

differential equation can be done by working in the orthonormal frame bun-

dle of the manifold: this the Eels-Elworthy-Malliavin construction. This

construction is widely explained in the Section 3.4. of Chapter 3.
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Appendix B

Vector Fields, Lie Groups and Lie

Algebras

B.1 Vector fields and exponential mapping

Let O ⊂ Rn be a non empty open set. A smooth vector field V on O is

simply a smooth map

V : O → Rn

x → (v1(x), ..., vn(x)).

It is a basic result in the theory of ordinary differential equations that if

K ⊂ O is compact, there exist ε > 0 and a smooth mapping

Φ : (−ε, ε)×K → O,

such that for x ∈ K and −ε < t < ε,

∂Φ

∂t
(t, x) = X(Φ(t, x)), Φ(0, x) = x.

Furthermore, if y : (−η, η) → Rn is a C1 path such that for −η < t < η,

y′(t) = X(y(t)), then y(t) = Φ(t, y(0)) for −min(η, ε) < t < min(η, ε).

From this characterization of Φ it is easily seen that for x ∈ K and t1, t2 ∈ R

such that | t1 | + | t2 |< ε,

Φ(t1,Φ(t2, x)) = Φ(t1 + t2, x).

Because of this last property, the solution mapping t → Φ(t, x) is called

the exponential mapping, and we denote Φ(t, x) = etV (x). It always exists

if | t | is sufficiently small. If etV can be defined for any t ∈ R, then the

vector field is said to be complete. For instance if O = Rn and if V is

C∞-bounded then the vector field V is complete.

117
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The vector field V defines a differential operator acting on the smooth

functions f : O → R as follows:

(LV f)(x) =

(
d

dt

)

t=0

f(etV (x)), x ∈ O.

We also use the following notation

(LV f)(x) = (V f)(x),

that is, we apply V to f as a first-order differential operator. With this

notation, observe that

V (x) =

n∑

i=1

vi(x)
∂

∂xi
. (B.1)

We note that V is a derivation, that is a map on C∞(O,R), linear over R,

satisfying for f, g ∈ C∞(O,R),

V (fg) = (V f)g + f(V g).

An interesting result is that, conversely, any derivation on C∞(O,R) is a

vector field, i.e. has the form (B.1). If V ′ is another smooth vector field on

O, then it is easily seen that the operator V V ′ − V ′V is a derivation. It

therefore defines a smooth vector field on O which is called the Lie bracket

of V and V ′ and denoted [V, V ′]. A straightforward computation shows

that for x ∈ O,

[V, V ′](x) =

n∑

i=1




n∑

j=1

vj(x)
∂v′i
∂xj

(x) − v′j(x)
∂vi

∂xj
(x)


 ∂

∂xi
.

Observe that the Lie bracket satisfies obviously [V, V ′] = −[V ′, V ] and the

so-called Jacobi identity, that is:

[V, [V ′, V ′′]] + [V ′, [V ′′, V ]] + [V ′′, [V, V ′]] = 0.

Let us now give a geometric meaning of the bracket. If φ : O′ → O is a

diffeomorphism between two open domains in Rn, the pull-back φ∗V of the

vector field V by the map φ is the vector field on O′ defined by the chain

rule,

φ∗V (x) = (dφ−1)φ(x) (V (φ(x))) , x ∈ O′.
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In particular, if V ′ is a smooth vector field on O, (etV )∗V ′ is defined on

most of O, for | t | small, and we can define the Lie derivative,

LV V
′ =

(
d

dt

)

t=0

(etV )∗V ′

as a vector field on O. It actually turns out that we have

LV V
′ = [V, V ′].

If the vector fields V and V ′ commute, that is if [V, V ′] = 0 then the flows

they generate locally commute; in other words, for any x ∈ O, there exists

a δ > 0 such that for | t1 | + | t2 |< δ,

et1V et2V ′

(x) = et2V ′

et1V (x).

Another essential point on the bracket is that one can flow in the direction

of the commutator [V, V ′] by a succession of flows along V and V ′. More

precisely, we have

e−tV e−tV ′

etV etV ′

= et2[V,V ′] +O(t3).

B.2 Lie derivative of tensor fields along vector fields

A smooth tensor field K of type (r, s), r, s ∈ N, on Rn is a smooth map

K : O → (Rn)
⊗r ⊗ (Rn∗)⊗s

,

where Rn∗ denotes the dual space of Rn. By convention a (0, 0) tensor is a

smooth function f : O → R. Any (r, s) smooth tensor field K can therefore

be written

K = V1 ⊗ · · · ⊗ Vr ⊗ α1 ⊗ · · · ⊗ αs,

where the Vi’s are smooth vector fields and the αi’s smooth one-forms, i.e.

applications O → Rn∗. Let φ : O′ → O denote a diffeomorphism between

two open domains in Rn, the pull-back of a smooth one-form α : O → Rn∗

by the map φ is the smooth one-form on O′ defined by,

φ∗α(x) = αφ(x) (dφ(x)) , x ∈ O′.

The pull-back by φ can now be defined on any (r, s) smooth tensor field K

in the following way:
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(1) If K is of type (0, 0), i.e. if K is a smooth function f : O → R, then

φ∗f(x) = (f ◦ φ)(x), x ∈ O′;

(2) If

K = V1 ⊗ · · · ⊗ Vr ⊗ α1 ⊗ · · · ⊗ αs,

then

φ∗K = φ∗V1 ⊗ · · · ⊗ φ∗Vr ⊗ φ∗α1 ⊗ · · · ⊗ φ∗αs.

Thanks to this action we are now able to define the notion of Lie derivative

along a given vector field. Let V denote a smooth vector field on O and let

K denote a smooth (r, s) tensor field also defined on O. We define the Lie

derivative of K along V as the smooth (r, s) tensor field on O given by

LV K =

(
d

dt

)

t=0

(etV )∗K.

The Lie derivative along a vector field V enjoys the following properties:

(1) If f is a smooth function O → R, then

LV f = V f ;

(2) If K is a smooth (r, s) tensor field and V ′ a smooth vector field

L[V,V ′]K = [LV ,LV ′ ]K = (LV LV ′ − LV ′LV )K.

B.3 Exterior forms and exterior derivative

For k ≥ 0, denote ∧kRn the space of skew symmetric k multilinear maps

(Rn)
p → R. For α ∈ ∧kRn, β ∈ ∧lRn, we define α ∧ β ∈ ∧k+lRn in the

following way: For any (u1, ..., uk+l) ∈ (Rn)k+l,

(α ∧ β)(u1, ..., uk+l) =
∑

sign(σ)α(uσ(1), ..., uσ(k))β(vσ(k+1) , ..., vσ(k+l)),

where the sum is taken over all shuffles ; that is, permutations σ of {1, ..., k+

l} such that σ(1) < ... < σ(k) and σ(k + 1) < ... < σ(k + l). Besides the

bilinearity, the basic properties of the wedge product ∧ are the following.

For α ∈ ∧kRn, β ∈ ∧lRn, γ ∈ ∧mRn:

(1) α ∧ β = (−1)klβ ∧ α;

(2) α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.
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If (α1, ..., αn) denotes the canonical basis of the dual space of Rn, then it

is easily seen that the family

{αi1 ∧ ... ∧ αik , 1 ≤ i1 < ... < ik ≤ n}

is a basis for ∧kRn. It follows that for k > n, ∧kRn = {0}, while for

0 < k ≤ n, ∧kRn is a vector space with dimension

(
n

k

)
. The direct sum

of the spaces ∧kRn, k ≥ 0 together with its structure as a real vector space

and multiplication induced by ∧, is called the exterior algebra of Rn. It is

a vector space with dimension 2n, which is denoted ∧Rn.

An exterior differential k-form on Rn is a smooth mapping α : Rn →
∧kRn. The set of differential k-forms shall be denoted Ωk(Rn). The

following fact is fundamental. There is a unique family of mappings

dk : Ωk(Rn) → Ωk+1(Rn) (k = 0, ..., n), which we merely denote by d,

called the exterior derivative on Rn such that:

(1) d is a ∧ antiderivation. That is, d is R linear and for α ∈ Ωk(Rn), β ∈
Ωl(Rn),

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ;

(2) If f : Rn → R is a smooth map, then df is the differential of f ;

(3) d ◦ d = 0 (that is, dk+1 ◦ dk = 0).

The link between the exterior derivative and the Lie bracket of vector fields

is given by the following formula which is due to E. Cartan: For any differ-

ential one-form α and any smooth vector fields U and V ,

dα(U, V ) = (LUα)(V ) − (LV α)(U) − α([U, V ]),

where L denotes the Lie derivative.

B.4 Lie groups and Lie algebras

A Lie group G is a group that is also an analytic manifold, such that

the group operations G × G → G and G → G given by (g, h) → gh and

g → g−1 are analytic maps. Let e denote the identity element of G. For

each g ∈ G we have left and right translations Lg and Rg, diffeomorphisms

on G defined by Lg(h) = gh and Rg(h) = hg. A smooth vector field V on
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G is said to be left-invariant if for any g ∈ G,

L∗
gV = V.

The set of left-invariant vector fields on G is a linear space called the Lie

algebra of G and is denoted g. The evaluation map V → V (e) provides a

linear isomorphism between g and the tangent space to G at the identity.

Therefore g is a finite dimensional vector space whose dimension is the

dimension of G. An important point is that g is closed under the bracket

operation. Namely, for V1, V2 ∈ g, [V1, V2] ∈ g. There is a natural map

from g to G, the exponential map, defined as follows. It is possible to

show that a left-invariant vector field V defines a global flow on G, that is

etV is defined for every t ∈ R. In particular, it is defined for t = 1. The

map g → G, V → eV (e), is called the exponential map (by a slight abuse

of notation, we shall still denote eV = eV (e)). The exponential map is a

diffeomorphism from a neighborhood of 0 in g onto a neighborhood of e in

G, and its differential map at 0 is the identity. Nevertheless, let us mention

that, in general, the exponential map is neither a global diffeomorphism,

nor a local homomorphism, nor even a surjection. It is easily seen from the

properties of the exponential of vector fields that for V ∈ g, s, t ∈ R,

esV etV = e(s+t)V .

More generally, if V1, V2 ∈ g commute, that is [V1, V2] = 0, then

eV1eV2 = eV2eV1 .

It is of course possible to define the notion of Lie algebra independently of

the notion of Lie group. Namely, an abstract Lie algebra is a vector space

L, equipped with a bilinear map [·, ·] : L × L → L such that:

(1) [X,Y ] = −[Y,X ] for X,Y ∈ L;

(2) [X, [Y, Z]]+[Y, [Z,X ]]+[Z, [X,Y ]] = 0 forX,Y, Z ∈ L (Jacobi Identity).

If L is an abstract Lie algebra, the universal envelopping algebra A(L) is

defined as

A(L) = L⊗
C
/J ,

where,

(1) LC is the complexification of g,

(2) L⊗
C

= ⊕∞
k=0L

⊗k
C

,
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(3) J is the two-sided ideal generated by

{X ⊗ Y − Y ⊗X − [X,Y ], X, Y ∈ LC}.

In the case where L is the Lie algebra of a Lie group G, A(L) can be

identified with the set of all left-invariant operators on G. Besides vector

fields there are many interesting left-invariant differential operators on G.

For instance, up to a constant multiple, there is a unique left-invariant

measure on G which is called a (left) Haar measure. In many but not all

cases left Haar measure is also right Haar measure; In that case G is said

to be unimodular. For instance all compact Lie groups are unimodular.

Besides the Carnot groups, studied extensively in this book, there are some

particular Lie groups of matrices that we want to mention.

Example B.1 In the following examples we indicate the Lie groups and

the corresponding Lie algebras. The exponential map is simply the usual

exponential of matrices and the Lie bracket is given by the commutator

[A,B] = AB −BA. Let n ∈ N, n > 1, K = R or C, and Mn(K) the set of

n× n matrices with entries in K.

(1)

GLn(K) = {A ∈ Mn(K), detA 6= 0}, gln(K) = Mn(K).

(2)

SLn(K) = {A ∈ Mn(K), detA = 1}, sln(K) = {A ∈ Mn(K),TrA = 0}.

(3)

On(R) = {A ∈ GLn(R), At = A−1}, on(R) = {A ∈ Mn(R), At = −A}.

(4)

Un(C) = {A ∈ GLn(C), A∗ = A−1}, un(C) = {A ∈ Mn(C), A∗ = −A}.

B.5 The Baker-Campbell-Hausdorff formula

The Baker-Campbell-Hausdorff formula shows, and this is a priori a non ob-

vious fact, that the multiplication law in a Lie group is determined uniquely

and very explicitly by the Lie algebra structure, at least in a neighborhood

of the identity. Let G be a Lie group and let g be its Lie algebra. We

have seen that if X,Y ∈ g satisfy [X,Y ] = 0 then eXeY = eY eX . It is
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actually easy to check that under this commutation assumption, we have

eXeY = eX+Y . This formula is not true for arbitrary X,Y ∈ g. Never-

theless, the question arises naturally whether one can obtain an explicit

formula for eXeY . This is the content of the Baker-Campbell-Hausdorff

formula which reads

eXeY = eP(X,Y ),

where X and Y are elements of g in a sufficiently small neighborhood U

of 0, and where the map P : U × U → g has a universal form which

is independent of G. Let us precise the form of P (the formula we give

comes from [Dynkin (1947)], but referred to as the Specht-Wever theorem

in [Jacobson (1962)]). For this, we introduce some notations. ForX ∈ g, let

adX denote the linear endomorphism g → g given by (adX)(Y ) = [X,Y ],

Y ∈ g. We have,

P(X,Y ) =

+∞∑

k=1

(−1)k−1

k

∑ (adY )qk(adX)pk · · · (adY )q1 (adX)p1

(∑k
l=1(pl + ql)

)(∏k
l=1 pl!ql!

) , (B.2)

where the inner sum is over the set of nonnegative integers (pi, qi) such that

pi + qi > 0,

(of course either p1 = 1 or p1 = 0, q1 = 1), and we used the convention

(adX)1 = X . We have a simple generalization of (B.2) for more than two

exponentials:

eX1 · · · eXn = eP(X1,··· ,Xn),

where P(X1, · · · , Xn) is given by

+∞∑

k=1

(−1)k−1

k

∑ (adXn)pk,n · · · (adX1)
pk,1 · · · (adXn)p1,n · · · (adX1)

p1,1

(∑k
l,m=1 pl,m

)(∏k
l,m=1 pl,m!

) ,

the inner sum being taken over all nonnegative integers such that

n∑

m=1

pl,m > 0, l = 1, · · · , k.

Actually, the universality of P actually stems from a purely algebraic iden-

tity between formal series. Indeed, let us denote by R[[X1, ..., Xd]] the
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non-commutative algebra of formal series with d indeterminates. The ex-

ponential of Y ∈ R[[X1, ..., Xd]] is defined by

eY =
+∞∑

k=0

Y k

k!
.

Now, define the bracket between two elements Y and Z of R[[X1, ..., Xd]]

by

[Y, Z] = Y Z − ZY,

and denote by ad the map defined by (adY )Z = [Y, Z]. In this context,

the Baker-Campbell-Hausdorff formula reads

eY eZ = eP(Y,Z),

where

P(Y, Z) =

+∞∑

k=1

(−1)k−1

k

∑ (adZ)qk(adY )pk · · · (adZ)q1(adY )p1

(∑k
l=1(pl + ql)

)(∏k
l=1 pl!ql!

) , (B.3)

and, as before, the inner sum is over the set of nonnegative integers (pi, qi)

such that

pi + qi > 0.

Observe now that since

eY eZ = 1 +
∑

p+q>0

Y pZq

p!q!
,

and

ln
(
eY eZ

)
=

+∞∑

m=1

(−1)m−1

m

(
eY eZ − 1

)m
,

the formula (B.3) can also be written as

+∞∑

m=1

(−1)m−1

m

(
∑

p+q>0

Y pZq

p!q!

)m

= P(Y, Z).

More generally, in the same way, we have for Y1, ..., Yn ∈ R[[X1, ..., Xd]],

+∞∑

m=1

(−1)m−1

m

(
∑

p1+···+pn>0

Y p1

1 · · ·Y pn
n

p1! · · · pn!

)m

= P(Y1, · · · , Yn), (B.4)
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where P(Y1, · · · , Yn) is given by

+∞∑

k=1

(−1)k−1

k

∑ (adYn)pk,n · · · (adY1)
pk,1 · · · (adYn)p1,n · · · (adY1)

p1,1

(∑k
l,m=1 pl,m

)(∏k
l,m=1 pl,m!

) ,

the inner sum being, as before, taken over all nonnegative integers such

that

n∑

m=1

pl,m > 0, l = 1, · · · , k.

This is this version of the Baker-Campbell-Hausdorff formula which is used

in the proof of the Chen-Strichartz formula.

B.6 Nilpotent Lie groups

An abstract Lie algebra L is said to be nilpotent if for any X ∈ L, the map

adX : Y → [X,Y ] is a nilpotent endomorphism of L. A Lie group G is

said to be nilpotent if its Lie algebra g is a nilpotent Lie algebra. If G is a

nilpotent Lie group, then the Baker-Campbell-Hausdorff is global. Indeed,

in that case, from Dynkyn’s formula (B.2) there exists a Lie polynomial

P : g × g → g, with rational coefficients, such that for any X,Y ∈ g,

eXeY = eP(X,Y ).

According to (B.2), the first terms of P are the following:

P(X,Y ) = X + Y + 1
2 [X,Y ] + 1

12 [[X,Y ], Y ] − 1
12 [[X,Y ], X ]

− 1
48 [Y, [X, [X,Y ]]] − 1

48 [X, [Y, [X,Y ]]] + · · · .

Moreover if G is simply connected then the exponential map g → G is a

diffeomorphism. In that case, the group law of G is thus fully characterized

by the Lie algebra structure of g. It can also be shown that a nilpotent Lie

group can always be seen as a group of unipotent matrices.

B.7 Free Lie algebras and Hall basis

In this section we describe the construction of a linear basis in the free

Lie algebra with d generators. Let Z be the set of the d indeterminates

X1, ..., Xd. Let L0 be an abstract Lie algebra and i : Z → L0 a mapping.

The Lie algebra L0 is called free over Z if for any abstract Lie algebra L
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and any mapping f : Z → L, there is a unique Lie algebra homomorphism

f̃ : L0 → L such that f = f̃ ◦ i. It can be shown that there is a free

Lie algebra over Z which is unique up to isomorphism. This Lie algebra

is called the free Lie algebra with the d generators X1, ..., Xd. It shall be

denoted L(X1, ..., Xd). Denote now M(Z) the free monoid over Z, l(h) the

length of a word l ∈ M(Z) and Mi(Z) the set of all length i words. A Hall

family over Z is an arbitrary linearly ordered subset H ⊂ M(Z) such that:

(1) If u, v ∈ H and l(u) < l(v) then u < v;

(2) Z ⊂ H ;

(3) H ∩M2(Z) = {xy, x, y ∈ Z, x < y};
(4) H −

(
M2(Z) ∪ Z

)
= {a(bc), a, b, c ∈ H, b ≤ a < bc, b < c}.

Define a mapping θ : M(Z) → L(X1, ..., Xd) as follows. Take a word

from M(Z) and replace all round brackets with Lie brackets (e.g. X1X2

becomes [X1, X2], X1(X1X2) becomes [X1, [X1, X2]], etc...). Then the Hall-

Witt theorem asserts that θ maps H into a homogeneous linear basis in

L(X1, ..., Xd).

B.8 Basic Riemannian geometry

Let V1, ..., Vn be C∞ bounded vector fields on Rn such that for every x ∈ Rn,

(V1(x), ..., Vn(x)) is a basis of Rn;

Let us denote (θ1, ..., θn) ∈ Ω1(Rn)n the dual basis of (V1, ..., Vn). The

first invariant associated with the system (V1, ..., Vn) is the family of scalar

products (gx)x∈Rn on Rn obtained by declaring that for any x ∈ Rn, the

family (V1(x), ..., Vn(x)) is orthonormal. The following theorem is the fun-

damental theorem of Riemannian geometry.

Theorem B.1 There is a unique matrix of one-forms ω = (ωi
j)1≤i,j≤n

such that:

(1) dθ + ω ∧ θ = 0, that is, for any 1 ≤ i ≤ n, dθi +
∑n

j=1 ω
i
j ∧ θj = 0;

(2) ωt = −ω, that is, for any 1 ≤ i, j ≤ n, ωi
j = −ωj

i .

The matrix of one-forms ω is called the connection form, and the equations

dθ + ω ∧ θ = 0, ωt = −ω,

the first structural equations. Recall now that a connection ∇ on Rn is

simply a convention for differentiating a vector field along another vector



March 24, 2007 0:33 WSPC/Book Trim Size for 9in x 6in source

128 An Introduction to the Geometry of Stochastic Flows

field. If we denote by V(Rn) the set of smooth vector fields on Rn, it is

more precisely a map

∇ : V(Rn) × V(Rn) → V(Rn)

such that for any U, V,W ∈ V(Rn) and any smooth f, g : Rn → R:

(1) ∇fU+gV W = f∇UW + g∇VW ;

(2) ∇U (V +W ) = ∇UV + ∇UW ;

(3) ∇U (fV ) = f∇UV + U(f)V .

Since, by assumption, for any x ∈ Rn, the family of vectors

(V1(x), ..., Vn(x)) is a basis for Rn, it is easily seen that the vector fields

∇Vi
Vj , 1 ≤ i, j ≤ n entirely characterize a connection ∇. Thus, by using

our connection form ω we can generate a connection ∇ by declaring that

for any 1 ≤ i, j ≤ n,

∇Vi
Vj =

n∑

k=1

ωk
j (Vi)Vk.

The connection ∇ is called the Levi-Civita connection associated with the

elliptic system (V1, ..., Vn). This connection enjoys the two following addi-

tional properties:

(1) It is torsion free, that is, for any smooth vector fields X,Y ,

∇UV −∇V U = [U, V ];

(2) It is metric, that is, for any smooth vector fields U, V,W,

U(g(V,W )) = g(∇UV,W ) + g(V,∇UW ).

Let us now turn to the second structural equations. The equations

Ω = dω + ω ∧ ω,

that is,

Ωi
j = dωi

j +

n∑

k=1

ωi
k ∧ ωk

j , 1 ≤ i, j ≤ n,

define a skew-symmetric matrix of 2-forms such that for any smooth vector

fields X,Y ,

n∑

i=1

Ωi
j(X,Y )Vi = ∇X∇Y Vj −∇Y ∇XVj −∇[X,Y ]Vj , 1 ≤ j ≤ n.
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The (1, 3)-tensor R defined by the property that for any smooth vector

fields X,Y, Z,

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

is called the Riemannian curvature tensor of ∇ while the matrix of two-

forms Ω is called the curvature form. The Ricci curvature Ric is a trace of

the Riemannian curvature, it is the (0, 2) tensor defined by

Ric(X,Y ) =
n∑

i=1

g (R(X,Vi)Vi, Y ) .

Observe that we also have

Ric(X,Y ) =
n∑

i,j=1

Ωj
i (X,Vi)θ

j(Y ).

The Ricci transform Ric
∗ is defined as the symmetric (1, 1) tensor

Ric∗(X) =

n∑

i=1

R(X,Vi)Vi.

We also have

Ric∗(X) =

n∑

i,j=1

Ωj
i (X,Vi)Vj .

The last curvature quantity we wish to mention is the scalar curvature s,

it is the function defined by

s =
n∑

i=1

g (Ric∗(Vi), Vi) .

At this point, this is probably useful to see an example to understand how

all this works in action.

Example B.2 Let us consider on the Lie group SO(3) the left invariant

frame generated by

V1 =




0 1 0

−1 0 0

0 0 0


 , V2 =




0 0 0

0 0 1

0 −1 0


 , V3 =




0 0 1

0 0 0

−1 0 0




Let us recall that the following commutation relations hold

[V1, V2] = V3, [V2, V3] = V1, [V3, V1] = V2.
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For the dual frame θ =
(
θ1, θ2, θ3

)
, we have

dθ1 = −θ2 ∧ θ3
dθ2 = −θ3 ∧ θ1
dθ3 = −θ1 ∧ θ2.

Thus, to find the connection form, we have to solve the system

θ2 ∧ θ3 = ω1
2 ∧ θ2 + ω1

3 ∧ θ3
θ3 ∧ θ1 = −ω1

2 ∧ θ1 + ω2
3 ∧ θ3

θ1 ∧ θ2 = −ω1
3 ∧ θ1 + ω1

3 ∧ θ2.
The previous system admits the unique solution

ω =
1

2




0 −θ3 θ2

θ3 0 −θ1
−θ2 θ1 0



 .

To find the curvature form, we first compute

dω =
1

2




0 θ1 ∧ θ2 −θ3 ∧ θ1
−θ1 ∧ θ2 0 θ2 ∧ θ3
θ3 ∧ θ1 −θ2 ∧ θ3 0


 ,

and then,

ω ∧ ω =
1

4




0 −θ3 θ2

θ3 0 −θ1
−θ2 θ1 0



 ∧




0 −θ3 θ2

θ3 0 −θ1
−θ2 θ1 0





=
1

4




0 θ2 ∧ θ1 θ3 ∧ θ1

−θ2 ∧ θ1 0 θ3 ∧ θ2
−θ3 ∧ θ1 −θ3 ∧ θ2 0



 .

Therefore,

Ω = dω + ω ∧ ω =
1

4




0 θ1 ∧ θ2 −θ3 ∧ θ1
−θ1 ∧ θ2 0 θ2 ∧ θ3
θ3 ∧ θ1 −θ2 ∧ θ3 0


 .

It follows immediately that for every smooth vector fields X,Y on SO(3)

R(X,Vi)Vi =
1

4
X, i = 1, 2, 3,

Ric(X,Y ) =
3

4
g(X,Y ),
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Ric∗(X) =
3

4
X,

and

s =
9

4
.

Observe that the same computations could have been performed on SU(2).

There is a natural measure associated with the moving frame (V1, ..., Vd),

the so-called Riemannian measure: This is the measure µ on Rn given by

the density

dµ

dL
(x) =

1

| det (V1(x), ..., Vn(x)) | , x ∈ Rn,

where L denotes the Lebesgue measure.

There is also a natural and fundamental second order elliptic differential

operator, the Riemannian Laplacian which is given by

∆ =

n∑

i=1

V 2
i −

n∑

i=1

∇Vi
Vi.

This operator is a Riemannian invariant, that is, it does not depend on the

chosen moving frame (V1, ..., Vn). More precisely, if ϕ is a smooth map from

Rn onto the set of n× n orthogonal matrices, then

n∑

i=1

U2
i −

n∑

i=1

∇Ui
Ui =

n∑

i=1

V 2
i −

n∑

i=1

∇Vi
Vi,

where Ui = ϕ(Vi). Observe that the sum of squares operator

n∑

i=1

V 2
i

does not enjoy this property and is therefore not a Riemannian invariant.

The term
∑n

i=1 ∇Vi
Vi is actually at the heart of the difference between

Riemannian and Euclidean geometry.

One can define ∆ in a more intrinsic way. Let us consider the adjoint

d∗ of the exterior derivative d, that is d∗ is defined by the property that for

every smooth and compactly supported one-form α and any smooth and

compactly supported function f , we have
∫
fd∗αdµ =

∫
αdfdµ.
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Then, it can be shown that we have

∆ = −d∗ ◦ d.

A fundamental property of ∆ which stems directly from the previous

identity is that it is self-adjoint with respect to µ: For every smooth and

compactly supported functions f, g : Rn → R,
∫
f∆gdµ =

∫
g∆fdµ.
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Alexopoulos G.K., Lohoué N. (2004): On the large time behaviour of heat kernels
on Lie groups, Duke Math. Journal, To appear.

Azencott R. (1982): Formule de Taylor stochastique et développements asympto-
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Itô K., McKean H.P. (1996): Diffusions Processes and their Sample Paths, Clas-

sics in Mathematics, Springer, reprint of the 1974 Edition.
Jacobson N. (1962): Lie algebras, New York, Interscience.
Kobayashi S., Nomizu K. (1996): Foundations of Differential Geometry, Vol. 1,

Wiley Classics Library.
Kohn J.J. (1973): Pseudo-differential operators and hypoellipticity. Proc. Symp.

Pure Math. 23, 61-69.
Kunita H. (1980): On the representation of solutions of stochastic differential



March 24, 2007 0:33 WSPC/Book Trim Size for 9in x 6in source

136 An Introduction to the Geometry of Stochastic Flows

equations. In Azema, Yor (Eds.), Séminaire de probabilités XIV, LNM
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Menikoff A., Sjöstrand J. (1978): On the eigenvalues of a class of hypoelliptic

operators, Math. Ann. 235, 55-85.
Montgomery R. (2002): A Tour of Subriemannian Geometries, Their Geodesics

and Applications, Mathematical surveys and Monographs, Vol. 91, AMS.
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