Rough paths theory Fall 2017. Lecture 2

In this lecture we establish the basic existence and uniqueness results concerning differential equations driven by bounded variation paths and prove the continuity in the 1-variation topology of the solution of an equation with respect to the driving signal.

Theorem: Let x\in C^{1-var} ([0,T], \mathbb{R}^d) and let V : \mathbb{R}^e \to \mathbb{R}^{e\times d} be a Lipschitz continuous map, that is there exists a constant K > 0 such that for every x,y \in \mathbb{R}^e,
\| V(x)-V(y) \| \le K \| x-y \|.
For every y_0 \in \mathbb{R}^e, there is a unique solution to the differential equation:
y(t)=y_0+\int_0^t V(y(s)) dx(s), \quad 0\le t \le T.
Moreover y \in C^{1-var} ([0,T], \mathbb{R}^e).

Proof: The proof is a classical application of the fixed point theorem. Let 0 < \tau \le T and consider the map \Phi going from the space of continuous functions [0,\tau] \to \mathbb{R}^e into itself, which is defined by
\Phi(y)_t =y_0+\int_0^t V(y(s)) dx(s), \quad 0\le t \le \tau.
By using estimates on Riemann-Stieltjes integrals, we deduce that
\| \Phi(y^1)-\Phi(y^2) \|_{ \infty, [0,\tau]}
\le \| V(y^1)-V(y^2) \|_{ \infty, [0,\tau]} \| x \|_{1-var,[0,\tau]}
\le K \| y^1-y^2 \|_{ \infty, [0,\tau]} \| x \|_{1-var,[0,\tau]}
If \tau is small enough, then K \| x \|_{1-var,[0,\tau]} < 1, which means that \Phi is a contraction that admits a unique fixed point y. This y is the unique solution to the differential equation:
y(t)=y_0+\int_0^t V(y(s)) dx(s), \quad 0\le t \le \tau.
By considering then a subdivision
\{ \tau=\tau_1 < \tau_2 < \cdots < \tau_n=T \}
such that K \| x \|_{1-var,[\tau_k,\tau_{k+1}]} < 1, we obtain a unique solution to the differential equation:
y(t)=y_0+\int_0^t V(y(s)) dx(s), \quad 0\le t \le T
\square

The solution of a differential equation is a continuous function of the initial condition, more precisely we have the following estimate:

Proposition: Let x\in C^{1-var} ([0,T], \mathbb{R}^d) and let V : \mathbb{R}^e \to \mathbb{R}^{e\times d} be a Lipschitz continuous map such that for every x,y \in \mathbb{R}^e,
\| V(x)-V(y) \| \le K \| x-y \|.
If y^1 and y^2 are the solutions of the differential equations:
y^1(t)=y^1(0)+\int_0^t V(y^1(s)) dx(s), \quad 0\le t \le T,
and
y^2(t)=y^2(0)+\int_0^t V(y^2(s)) dx(s), \quad 0\le t \le T,
then the following estimate holds:
\| y^1 -y^2 \|_{\infty,[0,T]} \le \| y^1(0) -y^2(0) \| \exp \left( K \| x \|_{1-var,[0,T]} \right).

Proof: We have
\| y^1-y^2 \|_{\infty,[0,t]} \le \| y^1(0) -y^2(0) \| +K \int_0^t \| y^1-y^2 \|_{\infty,[0,s]} \| dx(s) \|,
and conclude by Gronwall’s lemma \square

This continuity can be understood in terms of flows. Let x\in C^{1-var} ([0,T], \mathbb{R}^d) and let V : \mathbb{R}^e \to \mathbb{R}^{e\times d} be a Lipschitz map. Denote by \pi (t,y_0), 0 \le t \le T, y_0 \in \mathbb{R}^e, the unique solution of the equation
y(t)=y_0+\int_0^t V(y(s)) dx(s), \quad 0\le t \le T.
The previous proposition shows that for a fixed 0 \le t \le T, the map y_0 \to \pi (t,y_0) is Lipschitz continuous. The set \{ \pi (t, \cdot), 0 \le t \le T \} is called the flow of the equation.
Under more regularity assumptions on V, the map y_0 \to \pi (t,y_0) is even C^1 and the Jacobian map solves a linear equation.

Proposition: Let x\in C^{1-var} ([0,T], \mathbb{R}^d) and let V : \mathbb{R}^e \to \mathbb{R}^{e\times d} be a C^1 Lipschitz continuous map. Let \pi(t,y_0) be the flow of the equation
y(t)=y_0+\int_0^t V(y(s)) dx(s), \quad 0\le t \le T.
Then for every 0\le t \le T, the map y_0 \to \pi (t,y_0) is C^1 and the Jacobian J_t=\frac{\partial \pi(t,y_0)}{\partial y_0} is the unique solution of the matrix linear equation
J_t=Id+ \sum_{i=1}^d\int_0^t DV_i(\pi(s,y_0))J_s dx(s),
where the V_i‘s denote the columns of the matrix V.

We finally turn to the important estimate showing that solutions of differential equations are continuous with respect to the driving path in the 1-variation topology

Theorem: Let x^1,x^2 \in C^{1-var} ([0,T], \mathbb{R}^d) and let V : \mathbb{R}^e \to \mathbb{R}^{e\times d} be a Lipschitz and bounded continuous map such that for every x,y \in \mathbb{R}^e,
\| V(x)-V(y) \| \le K \| x-y \|.
If y^1 and y^2 are the solutions of the differential equations:
y^1(t)=y(0)+\int_0^t V(y^1(s)) dx^1(s), \quad 0\le t \le T,
and
y^2(t)=y(0)+\int_0^t V(y^2(s)) dx^2(s), \quad 0\le t \le T,
then the following estimate holds:
\| y^1 -y^2 \|_{1-var,[0,T]} \le \| V \|_\infty \left( 1+ K\| x_1 \|_{1-var,[0,T]} \exp \left( K \| x_1 \|_{1-var,[0,T]} \right) \right) \| x^1 -x^2 \|_{1-var,[0,T]} .

Proof: We first give an estimate in the supremum topology. It is easily seen that the assumptions imply
\| y^1 -y^2 \|_{\infty ,[0,t]} \le K \int_0^t \| y^1 -y^2 \|_{\infty ,[0,s]} \| dx^1(s) \| +\| V \|_\infty \| x^1 -x^2 \|_{1-var,[0,T]}.
From Gronwall’s lemma, we deduce that
\| y^1 -y^2 \|_{\infty ,[0,T]} \le \| V \|_\infty \exp \left( K \| x \|_{1-var,[0,T]} \right) \| x^1 -x^2 \|_{1-var,[0,T]} .
Now, we also have for any 0\le s \le t \le T,
\| y^1(t)-y^2(t)-(y^1(s)-y^2(s))\|\le K \| y^1 -y^2 \|_{\infty ,[0,T]} \| x^1 \|_{1-var,[s,t]} +\| V\|_\infty \| x^1 -x^2 \|_{1-var,[s,t]} .
This implies,
\| y^1 -y^2 \|_{1-var,[0,T]} \le K \| y^1 -y^2 \|_{\infty ,[0,T]} \| x^1 \|_{1-var,[0,T]} +\| V\|_\infty \| x^1 -x^2 \|_{1-var,[0,T]}
and yields the conclusion \square

This entry was posted in Rough paths theory. Bookmark the permalink.

Leave a comment