Lecture 5. Dirichlet forms

As in the previous lecture, let (X, \mathcal{B}, \mu) be a good measurable space equipped with a \sigma-finite measure \mu.

Definition:  A function v on X is called a normal contraction of the function u if for almost every x,y \in X,
| v(x)-v(y)| \le |u(x) -u(y)| \text{ and } |v(x)| \le |u(x)|.

Definition:   Let (\mathcal{E},\mathcal{F}=\mathbf{dom}(\mathcal{E})) be a densely defined closed symmetric form on L^2(X,\mu).
The form \mathcal{E} is called a Dirichlet form if it is Markovian, that is, has the property that if u \in \mathcal{F} and v is a normal contraction of u then v \in \mathcal{F} and \mathcal{E}(v,v) \le \mathcal{E} (u,u).

The main theorem is the following.

Theorem:  Let (P_t)_{t \ge 0} be a strongly continuous self-adjoint contraction semigroup on L^2(X,\mu). Then, (P_t)_{t \ge 0} is a Markovian semigroup if and only if the associated closed symmetric form on L^2(X,\mu) is a Dirichlet form.

Proof: Let (P_t)_{t \ge 0} be a strongly continuous self-adjoint contraction Markovian semigroup on L^2(X,\mu). There exists a transition function \{p_t,t \geq 0 \} on X such that for every u \in L^\infty(X,\mu) and a.e. x \in X
P_tu (x)=\int_X u(y) p_t(x,dy), \quad t > 0.
Denote
k_t(x)= P_t1 (x)= \int_X p_t(x,dy).
We observe that from the Markovian property of P_t, we have 0 \le k_t \le 1 a.e.
We have then
\frac{1}{2} \int_X \int_X (u(x)-u(y))^2 p_t(x,dy) d\mu(x)=\int_X u(x)^2 k_t(x)d\mu(x)-\int_X u(x) P_t u (x) d\mu(x).
Therefore,
\langle u-P_t u,u \rangle=\frac{1}{2} \int_X \int_X (u(x)-u(y))^2 p_t(x,dy) d\mu(x)+\int_X u(x)^2 (1-k_t(x))d\mu(x).
Let us now assume that u \in \mathcal{F} and that v is a normal contraction of u. One has
\int_X \int_X (v(x)-v(y))^2 p_t(x,dy) d\mu(x) \le \int_X \int_X (u(x)-u(y))^2 p_t(x,dy) d\mu(x)
and
\int_X v(x)^2 (1-k_t(x))d\mu(x) \le \int_X u(x)^2 (1-k_t(x))d\mu(x).
Therefore,
\langle v-P_t v,v \rangle \le \langle u-P_t u,u \rangle
Since u \in \mathcal{F}, one knows that \frac{1}{t}\langle u-P_t u,u \rangle converges to \mathcal{E}(u) when t \to 0. Since \frac{1}{t} \langle v-P_t v,v \rangle is non-increasing and bounded it does converge when t \to 0. Thus v \in \mathcal{F} and
\mathcal{E}(v) \le \mathcal{E}(u).
One concludes that \mathcal E is Markovian.

Now, consider a Dirichlet form \mathcal E and denote by P_t the associated semigroup in L^2(X,\mu) and by A its generator.
The main idea is to first prove that for \lambda >0, the resolvent operator (\lambda \mathbf{Id}-A)^{-1} preserves the positivity of function. Then, we may conclude by the fact that for f \in L^2(X,\mu), in the L^2(X,\mu) sense
P_tf=\lim_{n \to +\infty} \left( \mathbf{Id} -\frac{t}{n} L\right)^{-n}f.

Let \lambda >0. We consider on \mathcal{F} the norm
\| f \|^2_{\lambda} =\| f \|^2_{L^2(X,\mu) }+\lambda\mathcal{E}(f,f)
From the Markovian property of \mathcal E, if u \in \mathcal{F}, then |u| \in \mathcal{F} and
\mathcal{E}(|u|, |u|) \le \mathcal{E}(u, u).

We consider the bounded operator
\mathbf{R}_\lambda=( \mathbf{Id}-\lambda A)^{-1}
that goes from L^2(X,\mu) to \mathcal{D}(A)\subset \mathcal{F}.
For f \in \mathcal{F} and g \in L^2(X,\mu) with g \ge 0, we have
\langle | f | , \mathbf{R}_\lambda g \rangle_\lambda= \langle | f | , \mathbf{R}_\lambda g \rangle_{L^2(X,\mu)}-\lambda \langle |f| , A\mathbf{R}_\lambda g \rangle_{L^2(X,\mu)}
=\langle |f|, (\mathbf{Id}-\lambda A) \mathbf{R}_\lambda g \rangle_{L^2(X,\mu)}
=\langle |f|, g \rangle_{L^2(X,\mu)}
\ge | \langle f, g \rangle_{L^2(X,\mu)}|
\ge |\langle f , \mathbf{R}_\lambda g \rangle_\lambda|.

Moreover, from previous inequality , for f \in \mathcal{F},
\|\text{ } | f|\text{ } \|_\lambda^2  =\| \text{ }| f |\text{ } \|_{L^2(X,\mu)}^2+\lambda \mathcal{E}(|f|,|f|)
 \le \| f \|_{L^2(X,\mu)}^2+\lambda \mathcal{E}(f,f)
 \le \| f \|_\lambda^2.

By taking f= \mathbf{R}_\lambda g in the two above sets of inequalities, we draw the conclusion
|\langle \mathbf{R}_\lambda g , \mathbf{R}_\lambda g \rangle_\lambda| \le \langle | \mathbf{R}_\lambda g | , \mathbf{R}_\lambda g \rangle_\lambda \le \|\text{ } | \mathbf{R}_\lambda g|\text{ } \|_\lambda \|\mathbf{R}_\lambda g\|_\lambda\le |\langle \mathbf{R}_\lambda g , \mathbf{R}_\lambda g \rangle_\lambda|.
The above inequalities are therefore equalities which implies
\mathbf{R}_\lambda g = | \mathbf{R}_\lambda g|.
As a conclusion if g \in L^2(X,\mu) is a.e. \ge 0, then for every \lambda >0, ( \mathbf{Id}-\lambda A)^{-1} g \ge 0 a.e.. Thanks to the spectral theorem, in L^2(X,\mu),
P_t g=\lim_{n \to +\infty} \left( \mathbf{Id} -\frac{t}{n} A\right)^{-n}g.
By passing to a subsequence that converges pointwise almost surely, we deduce that P_t g \ge 0 almost surely.
The proof of
g \le 1, \text{ a.e } \implies P_t g \le 1, \text{ a.e }.
follows the same lines and is let as an exercise to the reader. \square.

This entry was posted in Global analysis in Dirichlet spaces. Bookmark the permalink.

Leave a comment