Lecture 6. The Lp theory of Markovian semigroups

Our goal, in this lecture, is to define, for 1 \le p \le +\infty, P_t on L^p(X,\mu). This may be done in a natural way by using the Riesz-Thorin interpolation theorem that we recall below.

Theorem: [Riesz-Thorin interpolation theorem] Let 1 \le p_0, p_1,q_0,q_1 \le \infty, and \theta \in (0,1). Define  1 \le p,q \le \infty by

\frac{1}{p}=\frac{1-\theta}{p_0} + \frac{\theta}{p_1}, \quad \frac{1}{q}=\frac{1-\theta}{q_0} + \frac{\theta}{q_1}.
If T is a linear map such that
T:L^{p_0} \rightarrow L^{q_0}, \quad \| T \|_{ L^{p_0} \rightarrow L^{q_0} } =M_0
T:L^{p_1} \rightarrow L^{q_1}, \quad \| T \|_{ L^{p_1} \rightarrow L^{q_1} } =M_1,
then, for every f \in L^{p_0} \cap L^{p_1},
\| T f \|_q \le M_0^{1-\theta} M_1^{\theta} \| f \|_p.
Hence T extends uniquely as a bounded map from L^{p} to L^{q} with
\| T \|_{ L^{p} \rightarrow L^{q} } \le M_0^{1-\theta} M_1^{\theta} .

The statement that T is a linear map such that
T:L^{p_0} \rightarrow L^{q_0}, \quad \| T \|_{ L^{p_0} \rightarrow L^{q_0} } =M_0
T:L^{p_1} \rightarrow L^{q_1}, \quad \| T \|_{ L^{p_1} \rightarrow L^{q_1} } =M_1,
means that there exists a map T: L^{p_0} \cap L^{p_1}\rightarrow L^{q_0} \cap L^{q_1} with
\sup_{ f \in L^{p_0} \cap L^{p_1} , \| f \|_{p_0} \le 1 } \| Tf \|_{q_0} =M_0
and
\sup_{ f \in L^{p_0} \cap L^{p_1} , \| f \|_{p_1} \le 1 } \| Tf \|_{q_1} =M_1.
In such a case, T can be uniquely extended to bounded linear maps T_0: L^{p_0} \rightarrow L^{q_0} , T_1: L^{p_1} \rightarrow L^{q_1}. With a slight abuse of notation, these two maps are both denoted by T in the theorem.

We now are in position to state the following theorem:

Theorem: Let (P_t)_{t \ge 0} be a strongly continuous self-adjoint contraction Markovian semigroup on L^2(X,\mu). The space L^1 \cap L^{\infty} is invariant under P_t and P_t may be extended from L^1 \cap L^{\infty} to a contraction semigroup (P^{(p)}_t)_{t \ge 0} on L^{p} for all 1 \le p \le \infty: For f \in L^p,
\| P_t f \|_{ L^p} \le \| f \|_{ L^p}.
These semigroups are consistent in the sense that for f \in L^p \cap L^{q},
P^{(p)}_t f=P^{(q)}_t f.

Proof: If  f,g \in L^1 \cap L^{\infty} which is a subset of L^1 \cap L^{\infty}, then,
\left| \int_{X} (P_t f) g d\mu \right|  = \left| \int_{X} f(P_t g) d\mu \right |
 \le \| f \|_{ L^1} \| P_t g \|_{ L^\infty}
 \le \| f \|_{ L^1} \| g \|_{ L^\infty}.
This implies
\| P_t f \|_{ L^1} \le \| f \|_{ L^\infty}.
The conclusion follows then from the Riesz-Thorin interpolation theorem.

Exercise:  Show that if f \in L^{p} and g \in L^{q} with \frac{1}{p}+\frac{1}{q}=1 then,
\int_{\mathbb{R}^n} f P^{(q)}_t g d\mu=\int_{\mathbb{R}^n} g P^{(p)}_t f d\mu.

Exercise:

1) Show that for each f \in L^{1}, the L^{1}-valued map t \rightarrow P^{(1)}_t f is continuous.
2) Show that for each f \in L^{p}, 1<p<2, the L^{p}-valued map t \rightarrow P^{(p)}_t f is continuous.
3) Finally, by using the reflexivity of L^{p}, show that for each f \in L^{p} and every p \ge 1, the L^{p}-valued map t \rightarrow P^{(p)}_t f is continuous.

We mention, that in general, the L^{\infty} valued map t \rightarrow P^{(\infty)}_t f is not continuous.

This entry was posted in Global analysis in Dirichlet spaces, Uncategorized. Bookmark the permalink.

Leave a comment