Lecture 6. Gagliardo-Nirenberg inequalities in Dirichlet spaces

Let (X,μ,ℰ,ℱ) be a Dirichlet space and {Pt}t∈[0,∞) denote the associated Markovian semigroup. Throughout the lecture, we shall assume that P_t admits a measurable heat kernel pt(x,y) satisfying, for some C > 0 and β > 0,

p_{t}(x,y)\leq C t^{-\beta}

for μ × μ-a.e. (x,y) ∈ X × X, and for each t ∈ (0,+∞). We also assume stochastic completeness, which means that Pt1 = 1 for every t ≥ 0.

The goal of the lecture is to prove the Gagliardo-Nirenberg inequalities in that setting. The techniques we use come from a paper by Bakry-Coulhon-Ledoux-Saloff-Coste. For another approach to the Sobolev inequality, we refer to the post.

Contents

Preliminary lemmas

Lemma. For every f ∈ ℱ, t ≥ 0,

|| P_t f -f ||_{L^2(X,\mu)} \le C \sqrt{t} \mathcal{E}(f,f)^{1/2}.

Proof: Let Δ be the generator of the semigroup (Pt)t≥0. We use spectral theorem to represent Δ as a multiplier in some L2(Ω,ν) space:

U^{-1} A U g (x)=-\lambda(x) g(x),

so that

|| P_t f -f ||_{L^2(X,\mu)}^2=\int_{\Omega} \left( 1-e^{-t\lambda(x)}\right)^2(U^{-1} f)^2(x) d\nu(x)

\le C t \int_{\Omega} \lambda(x) (U^{-1} f)^2(x) d\nu(x)

= Ct \mathcal{E}(f,f).

Lemma. For every f ∈ ℱ,

\lim_{t \to 0} t^{-1}\int_X \int_X |f (x)-f(y)|^2 p_t(x,y) d\mu(x)d\mu(y) =2 \mathcal{E}(f,f).

Proof: Using Pt1 = 1 we have

\int_X \int_X |f (x)-f(y)|^2 p_t(x,y) d\mu(x)d\mu(y)

\int_X \int_X( f (x)^2-2f(x)f(y)+f(y)^2) p_t(x,y) d\mu(x)d\mu(y)

=2\int_X f(x)^2 d\mu(x)-2\int_X f(x)(P_t f) (x)d\mu(x)

=2 \int_X (f(x)-P_tf(x)) f(x) d\mu(x)

and we conclude thanks to a previous result.

Sobolev inequality

Lemma. Let 1 ≤ q < +∞. There exists a constant C > 0 such that for every f ∈ ℱ ∩ Lq(X,μ) and s ≥ 0,

\sup_{s \ge 0} s^{1 +\frac{q}{2\beta}} \mu \left( \{ x \in X\, :\, | f(x) | > s \} \right)^{\frac{1}{2}}\le C \mathcal{E}(f,f)^{1/2} || f ||_{L^q(X,\mu)}^{\frac{q}{2\beta}}.

Proof: Let f ∈ ℱ and denote

F(s)=\mu \left( \{ x \in X\, :\, | f(x) | > s \} \right).

We have then

F(s) \le \mu \left( \{ x \in X\, :\, | f(x) -P_t f (x) | > s/2 \} \right)+\mu \left( \{ x \in X\, :\, | P_t f (x) | > s/2 \} \right).

Now, from the heat kernel upper bound pt(x,y) ≤ C t, t > 0, one deduces, for g ∈ L1(X,μ), that

|P_t g (x) | \le Ct^{-\beta} \| g \|_{L^1(X,\mu)}.

Since Pt is a contraction in L(X,μ), by the Riesz-Thorin interpolation one obtains

| P_t f (x) | \le \frac{C^{1/q}}{t^{\beta /q}} \| f \|_{L^q(X,\mu)}.

Therefore, for

s= 2 \frac{C^{1/q}}{t^{\frac{\beta}{ q}}} \| f \|_{L^q(X,\mu)},

one has

\mu \left( \{ x \in X\, :\, | P_t f (x) | > s/2 \} \right)=0.

On the other hand, from previous  lemma,

\mu \left( \{ x \in X\, :\, | f(x) -P_t f (x) | > s/2 \} \right) \le C s^{-2} t \mathcal{E}(f,f).

We conclude that

F(s)^{1/2} \le C s^{-1 -\frac{q}{2\beta}} \mathcal{E}(f,f)^{1/2} \| f \|_{L^q(X,\mu)}^{\frac{q}{2\beta}}.

Lemma. Assume β > 1. There exists a constant C > 0 such that for every f ∈ ℱ,

\sup_{s \ge 0}\, s\, \mu \left( \{ x \in X\, :\, | f(x) | \ge s \} \right)^{\frac{1}{q}} \le C \mathcal{E}(f,f)^{1/2},

where q = 2β/(β – 1).

Proof: Let f ∈ ℱ be a non-negative function. For k ∈ ℤ, we denote

f_k=(f-2^k)_+ \wedge 2^k.

Observe that fk ∈ L2(X,μ) and ||fk||L2(X,μ) ≤ ||f||L2(X,μ). Moreover, for every x, y ∈ X, |fk(x) – fk(y)| ≤ |f(x) – f(y)| and so ℰ(fk,fk) ≤ ℰ(f,f). We also note that fk ∈ L1(X,μ), with

||f_k||_{L^1(X,\mu)} =\int_X |f_k| d\mu \le 2^k \mu (\{ x \in X\, :\, f(x) \ge 2^k \}).

We now use the previous lemma to deduce:

\sup_{s \ge 0} s^{1 +\frac{1}{2\beta}} \mu \left( \{ x \in X\, :\, f_k(x) > s \} \right)^{\frac{1}{2}} \le C \mathcal{E}(f_k,f_k)^{1/2} || f_k \|_{L^1(X,\mu)}^{\frac{1}{2\beta}}

\le C \mathcal{E}(f_k,f_k)^{1/2} \left( 2^k \mu (\{ x \in X\, :\, f(x) \ge 2^k \})\right)^{\frac{1}{2\beta}}

In particular, by choosing s = 2k we obtain

2^{k \left(1 +\frac{1}{2\beta} \right)} \mu \left( \{ x \in X\, :\, f(x) \ge 2^{k+1} \} \right)^{\frac{1}{2}} \le C \mathcal{E}(f_k,f_k)^{1/2} \left( 2^k \mu (\{ x \in X\, :\, f(x) \ge 2^k \})\right)^{\frac{1}{2\beta}}

Let

M(f)=\sup_{k \in \mathbb{Z}} 2^k \mu (\{ x \in X\, :\, f(x) \ge 2^k \})^{1/q}

where q = 2β/(β – 1). Using the fact that 1/q = 1/2 – 1/(2β) and the previous inequality we obtain:

2^{k} \mu \left( \{ x \in X\, :\, f(x) \ge 2^{k+1} \} \right)^{\frac{1}{2}} \le C 2^{ -\frac{kq}{2\beta}}\mathcal{E}(f,f)^{1/2} M(f)^{\frac{q}{2\beta}}

and

2^k \mu \left( \{ x \in X\, :\, f(x) \ge 2^{k+1} \} \right)^{\frac{1}{q}} \le C^{\frac{2}{q} } \mathcal{E}(f,f)^{1/q}M(f)^{\frac{1}{\beta}}.

Therefore

M(f)^{1-\frac{1}{\beta}} \le 2 C^{\frac{2}{q} } \mathcal{E}(f,f)^{1/q}

and one concludes

M(f) \le 2^{q/2} C \mathcal{E}(f,f)^{1/2}.

This easily yields:

\sup_{s \ge 0} s \mu \left( \{ x \in X\, :\, f(x) \ge s \} \right)^{\frac{1}{q}} \le 2^{1+q/2} C \mathcal{E}(f,f)^{1/2}

Let now f ∈ ℱ, which is not necessarily non-negative. From the previous inequality applied to |f| we deduce

\sup_{s \ge 0}\, s\, \mu \left( \{ x \in X\, :\, |f(x) | \ge s \} \right)^{\frac{1}{q}}

\le 2^{1+q/2} C \mathcal{E}(|f|,|f|)^{1/2}

\le 2^{1+q/2} C \mathcal{E}(f,f)^{1/2}.

Theorem. (Sobolev inequality) Assume β > 1. There exists a constant C > 0 such that for every f ∈ ℱ,

\| f \|_{L^q(X,\mu)} \le C \mathcal{E}(f,f)^{1/2}

where q = 2β/(β – 1).

To show that the weak type inequality implies the desired Sobolev inequality, we will need another slicing argument and the following lemma is needed.

Lemma. For f ∈ ℱ, f ≥ 0, denote fk = (f – 2k)+ ∧ 2k, k ∈ ℤ. There exists a constant C > 0 such that for every f ∈ ℱ,

\sum_{k \in \mathbb{Z}} \mathcal{E} (f_k,f_k) \le C \mathcal{E} (f,f).

Proof: Let pt(x,y) denote the heat kernel of the semigroup Pt. We first observe that, once we prove

\sum_{k \in \mathbb{Z}} \int_X \int_X |f_{k} (x)-f_{k}(y)|^2 p_t(x,y) d\mu(x)d\mu(y) \le C\int_X \int_X |f (x)-f(y)|^2 p_t(x,y) d\mu(x)d\mu(y)

where C > 0 is independent from t, then

\liminf_{t \to 0^+} \sum_{k \in \mathbb{Z}} t^{-1 } \!\!\!\int_X \int_X |f_{\rho} (x)-f_{\rho}(y)|^2 p_t(x,y)d\mu(x)d\mu(y)

\le C\liminf_{t \to 0^+} t^{-1 } \!\!\!\int_X \int_X |f (x)-f(y)|^p p_t(x,y) d\mu(x)d\mu(y),

and, using the superadditivity of the liminf, one concludes

\sum_{k \in \mathbb{Z}} \liminf_{t \to 0^+} t^{-1 } \int_X \int_X |f_{k} (x)-f_{k}(y)|^2 p_t(x,y) d\mu(x)d\mu(y)

\le C \liminf_{t \to 0^+} t^{-1 } \int_X \int_X |f (x)-f(y)|^2 p_t(x,y) d\mu(x)d\mu(y)

which yields

\sum_{k \in \mathbb{Z}} \mathcal{E} (f_k,f_k) \le C \mathcal{E} (f,f).

We therefore aim to prove the inequality above. For each k ∈ ℤ, set Bk = {x ∈ X : 2k < f ≤ 2k+1}. In this way, the external integral on the left-hand side is decomposed it into an integral over Bk and Bkc. For the integrals over Bk, since the mapping f → fk is a contraction, it follows that

\sum_{k\in\mathbb{Z}}\int_{B_k} \int_X |f_{k} (x)-f_{k}(y)|^2 p_t(x,y)d\mu(x)d\mu(y)\leq \int_X \int_X |f (x)-f(y)|^2 p_t(x,y)d\mu(x)d\mu(y).

To perform the integrals over Bkc, we decompose them as

\sum_{k\in\mathbb{Z}}\int_{B_k^c} \int_{B_k} |f_{k} (x)-f_{k}(y)|^2 p_t(x,y) d\mu(x)d\mu(y) +\sum_{k\in\mathbb{Z}}\int_{B^c_k} \int_{B_k^c}|f_{k} (x)-f_{k}(y)|^2 p_t(x,y)d\mu(x)d\mu(y)

=:\sum_{k\in\mathbb{Z}}J_1(k)+\sum_{k\in\mathbb{Z}}J_2(k).

Again, the contraction property of f → fk yields

\sum_{k\in\mathbb{Z}}J_1(k)\leq \sum_{k\in\mathbb{Z}} \int_X \int_{B_k}|f_{k} (x)-f_{k}(y)|^2 p_t(x,y)d\mu(x)d\mu(y)

\leq \int_X \sum_{k\in\mathbb{Z}} \int_{B_k}|f_{k} (x)-f_{k}(y)|^2 p_t(x,y)d\mu(x)d\mu(y)\leq \int_X \int_X |f (x)-f(y)|^2 p_t(x,y) d\mu(x)d\mu(y).

On the other hand, notice that for any (x,y) ∈ Bkc × Bkc we have |fk(x) – fk(y)| ≠ 0 only if

(x,y)\in \{f(x)\leq 2^k<f(y)/2 \}\cup\{f(y)\leq 2^k<f(x)/2\}=:Z_k\cup Z_k^*.

Also, |fk(x) – fk(y)| = 2k for (x,y) ∈ Zk ∪ Zk*. Thus,

\sum_{k\in\mathbb{Z}}J_2(k)\leq \sum_{k\in \mathbb{Z}}\int_X\int_X\big(\mathbf{1}_{Z_k}(x,y)+\mathbf{1}_{Z^*_k}(x,y)\big)|f_k(x)-f_k(y)|^2 p_t(x,y)d\mu(x)d\mu(y)

=\int_X\int_X\sum_{k\in\mathbb{Z}}\big(\mathbf{1}_{Z_k}(x,y)+\mathbf{1}_{Z^*_k}(x,y)\big)2^{2k} p_t(x,y) d\mu(x)d\mu(y).

One can see that

\sum_{k\in\mathbb{Z}}\mathbf{1}_{Z_k}(x,y) 2^{2k}\leq 2 |f(x)-f(y)|^2

and the same holds for Zk*, hence

\sum\limits_{k\in\mathbb{Z}}J_1(k)+\sum\limits_{k\in\mathbb{Z}}J_2(k)\leq 5 \int_X\int_X|f(x)-f(y)|^2 p_t(x,y) d\mu(x)d\mu(y).

Adding to these the term above finally yields the result

We can now conclude the proof of the Sobolev inequality.

Proof of the Sobolev inequality: Let f ∈ ℱ. We can assume f ≥ 0. As before, denote fk = (f – 2k)+ ∧ 2k, k ∈ ℤ. From Lemma 13.2 applied to fk, we see that

\sup_{s \ge 0} s \mu \left( \{ x \in X\, :\, | f_k(x) | \ge s \} \right)^{\frac{1}{q}} \le C \mathcal{E}(f_k,f_k)^{1/2}.

In particular for s = 2k, we get

2^k \mu \left( \{ x \in X\, :\, f (x) \ge 2^{k+1} \} \right)^{\frac{1}{q}} \le C \mathcal{E}(f_k,f_k)^{1/2}

Therefore,

\sum_{k \in \mathbb{Z}} 2^{k q} \mu \left( \{ x \in X\, :\, f (x) \ge 2^{k+1} \} \right) \le C^q \sum_{k \in \mathbb{Z}} \mathcal{E}(f_k,f_k)^{q/2}.

Since q ≥ 2, one has

\sum_{k \in \mathbb{Z}} \mathcal{E}(f_k,f_k)^{q/2} \le \left( \sum_{k \in \mathbb{Z}} \mathcal{E}(f_k,f_k) \right)^{q/2}

Thus, from the previous lemma

\sum_{k \in \mathbb{Z}} 2^{k q} \mu \left( \{ x \in X\, :\, f (x) \ge 2^{k+1} \} \right)\le C \mathcal{E}(f,f)^{q/2}.

Finally, we observe that

\sum_{k \in \mathbb{Z}} 2^{k q} \mu \left( \{ x \in X\, :\, f (x) \ge 2^{k+1} \} \right) \ge \frac{q}{2^{q+1}-2^q} \sum_{k \in \mathbb{Z}}\int_{2^{k+1}}^{2^{k+2}} s^{q-1} \mu \left( \{ x \in X\, :\, f (x) \ge s \} \right)ds

\ge \frac{1}{2^{q+1}-2^q} \| f \|_{L^q(X,\mu)}^q.

The proof is thus complete.

Gagliardo-Nirenberg inequalities

Using similar methods (see the paper) in the general case β > 0 one can get  the family of Gagliardo-Nirenberg inequalities.

Theorem. Let q = 2β/(β – 1) with the convention that q = ∞ if β = 1. Let r,s ∈ (0,+∞] and θ ∈ (0,1] satisfying

\frac{1}{r}=\frac{\theta}{q}+\frac{1-\theta}{s}.

If β = 1, we assume r < +∞. Then, there exists a constant C > 0 such that for every f ∈ ℱ,

\| f \|_{L^r(X,\mu)} \le C \mathcal{E}(f,f)^{\theta/2}\|f\|_{L^s(X,\mu)}^{1-\theta}.

We explicitly point out some particular cases of interest.

  1. Assume that β > 1. If r = s, then r = 2β/(β – 1) and above recovers the Sobolev inequality

    \| f \|_{L^r(X,\mu)} \le C \mathcal{E}(f,f)^{1/2}.

  2. Assume that β > 1. If s = +∞ and r ≥ 2β/(β – 1), then above yields

    \| f \|_{L^r(X,\mu)} \le C \mathcal{E}(f,f)^{\theta/2} \| f \|^{1-\theta}_{L^\infty(X,\mu)}

    with θ = 2β/(r(β – 1)).

  3. If r = 2 and s = 1, then above yields the Nash inequality

    \| f \|_{L^2(X,\mu)} \le C \mathcal{E}(f,f)^{\theta/2} \| f \|^{1-\theta}_{L^1(X,\mu)}

    with θ = β/(1 + β).

In the case β = 1 one obtains the Trudinger-Moser inequalities.

Corollary . Assume that β = 1. Then, there exist constants c,C > 0 such that for every f ∈ ℱ with ℰ(f,f) = 1,

\int_X \left( \exp \left( c |f|^2 \right)-1 \right) d\mu \le C \| f \|^2_{L^2(X,\mu)}.

This entry was posted in Dirichlet forms at NYU and tagged , , . Bookmark the permalink.

Leave a comment